Role of Renewables in Climate Change

Invited Talk: IEEE Education Society YP Seminar

Professor Saifur Rahman, IEEE Life Fellow
2023 IEEE President
08 June 2024
What is Carbonization?
For millennia, atmospheric carbon dioxide had never been above this line. Current level is significantly higher than the 1950 level.
Source: State of the Planet
https://news.climate.columbia.edu/2021/02/25/carbon-dioxide-cause-global-warming/
Impacts of Carbonization
Temperature rise since 1850

Global mean temperature change from pre-industrial levels, °C

Source: Met Office

Temperature rise target is below 1.5. More than 2.0°C Point of No Return
Opportunities of Decarbonization in the Electric Power Supply Industry

Source: IEEE Spectrum, Jan 2023

Reduce Carbon Emissions

1. Use less electricity, energy efficiency
2. Use low carbon fossil fuel power plants
3. Use H₂ & other storage technologies
4. Promote more renewables
5. Accept some nuclear
6. Promote cross-border power transfer
Customers Controlling Buildings Optimized for Savings

Measured energy savings across deployments

- **20%** HVAC Energy Savings
- **25%** Lighting Energy Savings

Occupant satisfaction: spaces controlled by a building automation systems are more comfortable due to more consistent temperature profiles and healthier air quality through consistent monitoring of environmental factors (CO₂ levels, PM 2.5).
Carbon Capture & Storage Systems (CCS)

- Can help ensure that emissions created during the energy generation phase will not be emitted into the atmosphere
- These technologies have the potential to significantly reduce carbon emissions in energy systems across the board
Hydrogen and Storage Solutions

Optimize renewable energy solutions being integrated into energy grids

- Low-carbon hydrogen will help emerging economies to meet climate goals in and of itself
 - Provide for diverse energy portfolios
 - Improving resilience
 - Lowering costs

- Storage solutions serve as optimizers for other renewable energy solutions
 - Ensure that electricity generated during off-peak hours does not go to waste
Renewable Energy Integration

Whitelee Windfarm, Glasgow, Scotland
Kenya School of Monetary Studies, Nairobi
Advanced Nuclear Technologies

Diverse solutions to address climate change

- Advanced nuclear technologies, such as small modular reactors (SMRs), can play a role
 - Smaller and can be built more quickly than more traditional nuclear reactors
- Ramping up the development of SMRs can help to produce energy when and where needed
- This energy could be integrated into existing power grids
 - helping to provide improved resiliency while simultaneously reducing emissions
Small Modular Reactors (SMR)

20m tall, 2.7m dia. 590 tons LWR
4.95% enrichment. 50 – 60 MWe

Source: NUScale Power
Cross-Border Energy Transfer

No Transition without Transmission

- As we are in this fight together, our solutions should be collaborative to secure better outcomes for all countries, regardless of location.
- The International Energy Agency (IEA) has identified three main modes of cross-border energy integration:
 - Bilateral
 - Multilateral
 - Unified
What Can you Do to Serve Humanity?

Clean-Tech Solutions for Climate Sustainability
IEEE’s Climate Change Program

IEEE: Enabling Innovation and Technology Solutions
Examples of Global Engagements
Energy Transition

Rotary Pavilion - 1st Floor, Zone B7
Building 89, near COP28 Health Pavilion

December 5th - 11:00am
IEEE 140 YEARS 1884-2024

Celebrating 140 Years of Advancing Technology for Humanity
Thank you

web: www.srahman.org