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Abstract 

The uncertainty associated with photovoltaic (PV) systems is one of the core obstacles 
that hinder their seamless integration into power systems. The fluctuation, which is 
influenced by the weather conditions, poses significant challenges to local energy 
management systems. Hence, the accuracy of PV power forecasting is very important, 
particularly in regions with high PV penetrations. This study addresses this issue by 
presenting a framework of novel forecasting methodologies based on hybrid data-
driven models. The proposed forecasting models hybridize Support Vector Regression 
(SVR) and Artificial Neural Network (ANN) with different Metaheuristic Optimization 
Algorithms, namely Social Spider Optimization, Particle Swarm Optimization, Cuckoo 
Search Optimization, and Neural Network Algorithm. These optimization algorithms are 
utilized to improve the predictive efficacy of SVR and ANN, where the optimal selection 
of their hyperparameters and architectures plays a significant role in yielding precise 
forecasting outcomes. In addition, the proposed methodology aims to reduce the 
burden of random or manual estimation of such paraments and improve the robust-
ness of the models that are subject to under and overfitting without proper tuning. 
The results of this study exhibit the superiority of the proposed models. The proposed 
SVR models show improvements compared to the default SVR models, with Root Mean 
Square Error between 12.001 and 50.079%. Therefore, the outcomes of this research 
work can uphold and support the ongoing efforts in developing accurate data-driven 
models for PV forecasting.

Keywords:  PV power forecast, Machine learning, Metaheuristic Optimization 
Algorithms, Hyperparameters and architectures tuning, Feature selection

Introduction
The tendency toward embracing emission-free energy from different renewable energy 
technologies, such as solar photovoltaic (PV), has resulted in necessary changes in the 
distribution system operation. These operational obstacles are due to the intermittency 
nature of the power coming from the sun, which requires additional ancillary services 
to control the variability in the PV system generations [1]. However, these services are 
economically unfeasible, and adopting them may discourage installing PV systems in 
the distribution networks [2]. Therefore, an accurate prediction of the amount of energy 
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from the PV system would facilitate mitigating the technical issues of these PV systems 
[3]. There are various forecasting objectives in electrical power systems, such as electri-
cal load consumption [4–6], wind power [7–9], solar irradiance [10–12], and electricity 
market forecasts [3]. In this study, the solar PV power forecast is of focus.

PV power output is highly correlated with meteorological variables, such as solar irra-
diance, wind speed, humidity, and temperature. These variables depend mainly on the 
geographical location and the climate condition at the site in question. In terms of the 
PV power forecasting horizon, four main categories are considered: very short-term 
forecasting (1  s–< 1  h), short-term forecasting (1  h–24  h), medium-term forecasting 
(1 week–1 month), and long-term forecasting (1 month–1 year). According to [13, 14], 
the PV output prediction horizon should be identified before choosing the forecasting 
technique because the forecasting accuracy decreases as the forecasting time increases. 
Furthermore, the choice of forecasting time depends on the desired application. For 
instance, very short-term forecasting can be applied for power smoothing, real-time 
dispatch and control, and regulation services, while short-term is primarily focused on 
load-following and zone-control purposes [15]. For medium-term forecasting, it is use-
ful for persevering the power system planning and maintenance schedule, whereas long-
term forecast assists in generation planning, energy bidding, and security operation [13].

Concerning the forecasting techniques, physical, statistical, and hybrid-based pre-
diction models can be employed for PV power production. Physical approaches are 
mathematical models that use weather forecast data attained from numerical weather 
prediction (NWP), while statistical methods utilize historical data to predict future 
behavior without prior knowledge about the system state [16]. The hybrid method com-
bines two independent forecasting methods to overcome each other drawbacks and 
strengthen the advantages by adding some optimization algorithms [3]. For the statisti-
cal methods, they are divided into (i) time series models, i.e., autoregressive, autoregres-
sive moving average (ARMA), and autoregressive integrated moving average (ARIMA), 
and (ii) machine learning methods, i.e., artificial neural network (ANN), support vector 
regression (SVR), and extreme learning machine.

A systematic literature review of PV power production forecast can be found in [17]. 
The authors in [18] compare statistical approaches, namely ARMA, ARIMA, and sea-
sonal ARIMA, with six different ANN to forecast the output power of a PV plant. Eight-
time delays in power production from a PV plant are used as the input variables to 
generate the forecasting results. The analysis shows that ANN performs better than time 
series models with less computation time. The paper in [19] uses ANN and NWP data to 
predict the power output of a PV system located in Puglia, Italy. They use temperature 
and solar irradiation as predictors of the forecasting algorithm. Results show that the 
proposed model provides good prediction results with a 10% error value.

The authors in [20] present a methodology for PV power forecasts using machine 
learning algorithms and statistical post-processing. They use as forecasting methods the 
ANN and linear regression correction to enhance the accuracy of forecasting. Results 
show that the proposed model has good accuracy values as the Mean Absolute Percent-
age Error ( MAPE ) was 4.7% using the historical dataset. The study in [21] examines the 
performance of different machine learning algorithms to forecast the hourly production 
of a PV system, including k-nearest neighbor (kNN), multiple regression (MLR), and 
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decision tree regression (DTR). They employ weather data as input variables to the fore-
casting models such as solar irradiance and temperature. Results exhibit that the kNN 
has superior performance compared to MLR and DTR with a Root Mean Square Error 
( RMSE ) of 18.68%, Mean Absolute Error ( MAE ) of 80.6%, and a normalized RMSE error 
( nRMSE ) of 13.2%. The recent study in [22] compares 24 machine learning algorithms 
for a day-ahead power forecast using numerical weather predictions (NWP). The study 
concludes by stating that the selection of input variables and hyperparameter tuning is 
more important than the model selection. In their study, the model that considers the 
sun position angles and irradiance reading after statistical processing results in a 13.1% 
decrease in RMSE compared to the basic case (Global Horizontal Irradiance (GHI), tem-
perature, and wind speeds).

Machine learning algorithms proved their effectiveness in different forecasting objec-
tives as they can capture and deal with the nonlinearity in forecasting problems com-
pared to other forecasting methods. The statistical approaches have the advantage of 
handling high data volume [23]. The SVR, on the other hand, has superior forecasting 
performance with small data samples [24]. In addition, ANN can conduct any non-lin-
ear mapping using the learning process [25]. This makes SVR and ANN favorable to be 
employed. However, the main drawback of applying SVR and ANN algorithms is that 
they are sensitive to specific parameters. For instance, SVR depends highly on Kernel 
function hyperparameters, namely the error penalty parameter (C) and the width (γ ) . 
Also, ANN performance is greatly influenced by the number of hidden layers and neu-
rons at each hidden layer. Therefore, the hybrid models have been investigated by the 
literature recently to overcome the overmentioned disadvantages of SVR and ANN.

Metaheuristic optimization algorithms (MOA), such as Simulated Annealing (SA), 
Particle Swarm Optimization (PSO), Genetic Algorithm (GA), and Grasshopper Opti-
mization Algorithm (GOA), have been used to select the appropriate parameters. For 
example, authors in [26] use GA to tune the SVR parameters to forecast the price of 
electricity in Australia. For the PV power generation forecast, a hybrid model is created 
in [27] between GA and SVR (GASVR) to optimize different Kernel function param-
eters. Study results demonstrate that GASVR is more accurate than the conventional 
SVR, with improvements in RMSE value of 669.624 and 98.7648% in the MAPE . In addi-
tion, the study by Netsanet et  al. [28] proposes a hybrid PV power forecasting model 
using variation mode decomposition with ANN and Ant Colony Optimization (ACO). 
The role of ACO is to improve the performance of ANN by optimizing its weight and 
biases during the training phase. The proposed model shows high-accuracy outcomes 
with the coefficient of determination, R2, of 0.9768.

Motivation and contributions of the study

From the above discussion, the hybrid forecasting methods have shown a good per-
formance compared to other methods. In addition, different MOA methods have been 
applied in the literature to improve the SVR and ANN prediction performance. The pri-
mary objective of such optimization algorithms is to determine the optimal parameters 
of SVR and ANN. However, there is no clear consensus on which algorithm should be 
used to estimate these parameters. Therefore, in this study, hybrid PV forecasting mod-
els are proposed based on machine learning algorithms, which utilize SVR and ANN 
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optimized with four MOA, namely Social Spider Optimization (SSO), PSO, Cuckoo 
Search Optimization (CSO), and Neural Network Algorithm (NNA). These algorithms 
are used to improve the predictive efficacy of the selected algorithms, where the optimal 
selection of their hyperparameters and architectures plays a significant role in yielding 
precise forecasting outcomes. Hence, the following are the primary contributions of this 
study to the field of PV power forecasting:

1.	 The SVR and ANN are machine learning algorithms used in this study to exploit the 
underlying big data patterns and forecast future values of PV power outputs.

2.	 As the prediction performance of SVR and ANN depends highly on their hyperpa-
rameters and architectures, respectively, an intelligent framework is proposed in this 
study to facilitate the burden of manual parameter setting and expedite the forecast-
ing process.

3.	 As the optimal selection of their hyperparameters and architectures plays a signifi-
cant role in yielding precise forecasting outcomes, this paper uses four MOA, namely 
SSO, PSO, CSO, and NNA, to improve the predictive efficacy of the selected algo-
rithms.

4.	 This paper uses different independent combinations of variables as inputs to identify 
the suitable variables that give the best PV power forecasting outcomes. This will 
help overcome the computational burden and complexity that may exist in the input 
features. These variables are time, weather, and historical data of the PV power gen-
eration.

5.	 Despite that this work aims to forecast the output power of a PV system located in 
Riyadh city, Saudi Arabia, the proposed framework is useful for determining the best 
forecasting models in various locations.

The rest of the paper is organized as follows: In “Methodology” section, the study 
framework is described together with SVR and ANN algorithms and the MOA methods, 
including SSO, PSO, CSO, and NNA. The main findings and the comparison outcomes 
among the prediction models and MOA approaches are in “Results and discussion” sec-
tion. Finally, “Conclusion and future work” section contains the conclusion of this study.

Methodology
This section presents the proposed hybrid forecasting techniques and other forecasting 
algorithms used in this study to predict the PV power output. The proposed forecasting 
methods include a hybrid method between SVR and backpropagation neural network 
(PBNN) with four MOA. These algorithms are SSO, PSO, CSO, and NNA. Initially, the 
forecasting framework is highlighted. After that, the fundamental of the BPNN and SVR 
are explained together with the MOA. Finally, the criteria to evaluate the forecasting 
models’ accuracy are described.

Framework of the proposed forecasting models

Sixteen hybrid and three default models have been developed to enhance the accuracy 
of the prediction. In this study, therefore, the forecasting approaches used are as follows:
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•	 SVR based on RB function with SSO, PSO, CSO, and NNA—(SSO − SVRRB) , 
( PSO − SVRRB ), ( CSO − SVRRB ), and ( NNA− SVRRB).

•	 SVR based on linear function with SSO, PSO, CSO, and NNA—(SSO − SVRlinear ), 
( PSO − SVRlinear ), ( CSO − SVRlinear ), and ( NNA− SVRlinear).

•	 BPNN model with one hidden layer with SSO, PSO, CSO, and NNA—
(

SSO − BPNN 1
)

 , PSO 
(

PSO − BPNN 1
)

 , 
(

CSO − BPNN 1
)

 , and 
(

NNA− BPNN 1
)

.

•	 Hybrid Model 10: BPNN model with two hidden layers with SSO, PSO, CSO, and 
NNA—

(

SSO − BPNN 2
)

 , 
(

PSO − BPNN 2
)

 , 
(

CSO − BPNN 2
)

 , and 
(

NNA− BPNN 2
)

.
•	 Default SVR model based on RB function 

(

SVRD
RB

)

.

•	 Default SVR model based on linear function 
(

SVRD
linear

)

.

•	 Default BPNN model 
(

BPNND
)

.

This study implements SVR-based kernel functions and BPNN by employing MAT-
LAB R2020a and LIBSVM tools [29]. The framework that explains the proposed PV 
power output forecast is depicted in Fig. 1. This framework can be used for any fore-
casting objective in other countries. The process is described as follows:

Step 1:	� Data preparation: input data are initially collected, checked, cleaned, and nor-
malized to reduce the numerical burden during the training phase by the fore-
casting algorithms and the searching process of the parameters.

Step 2:	�  Correlation values: the importance of data features are investigated against the 
output feature (PV power). The Pearson Correlation Coefficient is used in this 
study; see “Feature combinations” section.

Step 3:	�  Data splitting: the input data are divided into training and testing datasets. The 
training data are used to train the forecasting algorithms, while testing data 
are used to test the forecasting models’ performance. To validate the stability 
of the forecasting model, tenfold cross-validation is used. The cross-validation 
process is described in “Cross-validation” section.

Step 4:	�  Parameters tuning: SSO, PSO, CSO, and NNA algorithms are applied to deter-
mine the SVR best hyperparameters and BPNN best network configurations 
for all the considered feature combinations. SVR parameters are C and γ for 
the RB function and C for the linear function. BPNN parameters are the num-
ber of neurons at each hidden layer. In this study, one and two hidden layers 
are assumed.

Step 5:	�  Building the forecasting models: by using the best parameters mentioned 
in Step 3, sixteen hybrid models are generated for each of the considered 
feature combinations, namely SSO-SVRRB, PSO − SVRRB,CSO − SVRRB , 
NNA− SVRRB , SSO-SVRlinear , PSO-SVRlinear , CSO-SVRlinear , 
NNA− SVRlinear , SSO − BPNN 1 , PSO − BPNN 1 , CSO − BPNN 1 , 
NNA− BPNN 1 , SSO − BPNN 2 , PSO − BPNN 2 , CSO − BPNN 2 , and 
NNA− BPNN 2.

Step 6:	�  Generating results: the hybrid forecasting models created in Step 4 are tested 
under the testing dataset determined in Step 2. Their output is the prediction 
results.

Step 7:	�  Results comparison: the forecasting models are then compared with the 
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actual values of the PV power output utilizing RMSE , nRMSE , MAE and nor-
malized MAE s (nMAE) . The results are compared and then analyzed.

Detail description of each process is explained in the subsections below.

Study site and dataset

The datasets of the PV power output are collected from a rooftop PV system placed on a 
mosque in Riyadh city, Saudi Arabia. Five PV-inverters are installed on this site, making the 
PV system have a capacity of 120kWp. This location is operated by both King Abdelaziz 
City for Science and Technology and Saudi Electricity Company. The PV output data gath-
ered from the unit are in 1-h intervals for the period between June 03rd, 2017, and August 
31st, 2018. The maximum power production from the system was found to be on March 
25th, 2018, with a total active power production of 105.09285 kW at 11:00 A.M. The hourly 
data show numerical readings from the PV system at night hours when no irradiance is 
expected. To deal with such data, all data below 100 W are omitted and set to zero, implying 

Fig. 1  Study framework for the proposed PV power forecasting method
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that there is no output power from the PV system. after sunset and before the sun rises. The 
metrological weather data used in this study are recorded hourly at the same location as the 
PV system. They are collected from a solar station operated by the King Abdullah City for 
Atomic and Renewable Energy (K.A.CARE). Figure 2 shows the solar map of Saudi Arabia 
and the site.

Data preparation

The weather and PV power data are required to be prepared. Two main steps are necessary 
for data preparation. These steps are data cleaning and data normalization. Each of these 
steps is described below:

Data cleaning

Data cleaning is a very significant step in creating a successful forecasting model. Since 
we are dealing with historical data from different sources, these data could be imprecise, 
impacting the performance of the forecasting models. This step removes all the missing PV 
power data with the associated time and weather variables.

Data normalization

Input data normalization is critical for preparing the data before investigating the perfor-
mance of forecasting models. This step aims to reduce the likelihood that features with 
high numerical values will outnumber those with lower ones [31]. The input data listed in 
Table 1 are normalized between 0 and 1 using Eq. (1).

(1)vni =
vi − vmin

vmax − vmin

Fig. 2  Saudi Arabia solar map [30]
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where xi is the observed value; xni  is the reading value after normalization, while xmax 
and xmin are the maximum and minimum values corresponding to the observed dataset, 
respectively.

Forecasting models input variables

In this work, the forecasting objective is a one-hour ahead forecasting of PV power gen-
eration from a PV panel located in Riyadh city, Saudi Arabia. Therefore, to obtain the 
best forecasting model of PV power output, the proposed models are trained and tested 
using three types of variables considered at the study location. As mentioned in the lit-
erature, the PV output is greatly influenced by time, weather, and historical data of PV 
power generation. Table 1 lists the input variables used in this study.

The variable (v4i ) , for example, is the air temperature (◦C) , and i is the temperature 
value at each hour. On each day, we have 24 values of air temperature. After that, the 
dataset ( V  ) is split into two groups, namely: the training dataset, vtrain , and the test data-
set, vtest , such that V = vtrain ∪ vtest . In this paper, 80% of the data are considered for 
the training phase, while 20% are used in the testing phase. The Cross-Validation tech-
nique is utilized to tune the hyperparameters of the SVR models and the BPNN network 
configuration.

Feature combinations

To forecast the PV output ( Pout) , various independent combinations of variables are 
used as inputs. As more input variables do not always indicate good forecasting out-
comes [32], the primary goal of combining different sets of input variables is to identify 
the suitable variables that give the best forecasting results at this site. In this study, Pear-
son Correlation Coefficient is used to measure the importance of each variable with the 
observed values of the PV power. Pearson correlation formula is in Eq. (2), where cov is 
the covariance, σfeatures and σPV-power are the standard deviations of input variables, xfea-

tures, and the PV power readings, xPV-power, respectively. Figure 3 displays the correlation 
results between the input variables and the PV power readings at the study site.

Table 1  List of input variables used to forecast PV power output

Input variables

Time variables v
1
i

Month

v
2
i

Day

v
3
i

Hour

Weather variables v
4
i

Air temperature (°C)

v
5
i

Wind direction (°N)

v
6
i

Wind speed (m/s)

v
7
i

Direct normal irradiance, DNI (Wh/m2)

v
8
i

Global horizontal irradiance, GHI (Wh/m2)

v
9
i

Pressure (mB)

Lag variables v
10
i

PV power output at the same hour on 
the previous day  (kW)
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Table 2 contains the variables for each feature combination. Considering the feature 
combination (12), for example, the Pout(v1i , v

2
i , v

3
i , v

8
i , v

10
i ) is a function of Month, Day, 

Hour, global horizontal irradiance, GHI, (Wh/m2), and PV power output at the same 
hour on the previous day (kW).

Cross‑validation

To evaluate the performance of the proposed forecasting models, it is not ideal for con-
ducting this evaluation based on one test set. Therefore, to examine the forecasting 
model performance over different test data, k-fold Cross-Validation should be employed. 
Cross-validation is a procedure in which the data are split into more k-subsets [33]; see 
Fig. 4. These k-subsets are further divided into testing and training groups. In the train-
ing group, a single subset is used as a validation data set, while the remaining k-subsets 
are used as training subsets. This technique is repeated k times until the entire k-subsets 
are used as a validation set. Hence, the overall result is independent of only one training 
set, which may affect the robustness of the forecasting models [34].

It is worth mentioning that the k-fold Cross-Validation procedure is conducted in the 
absence of the testing dataset. The primary goal of Cross-Validation is to examine the 
generalization of a forecasting model. In this study, tenfold cross-validation is used. In 
other words, the training dataset is divided into 10-subsets. One subset is considered the 
test set, while the remaining nine subsets are utilized for training the forecasting model. 

(2)ρxfeatures ,xPV−power =
cov(xfeatures, xPV−power)

σfeatures.σPV−power

Fig. 3  Correlation coefficients results between the input features and the PV power output
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This process is repeated ten times resulting in ten training and testing folds, where the 
nRMSE is recorded for each of them. The average of the tenfold nRMSE results is then 
reported.

Backpropagation neural network

The artificial neural network (ANN) has been used in various forecasting applications. 
ANN is an information computing system. ANN mimics approaches that the human 
brain analyzes information [35]. ANN is created similar to the human brain, where a 
huge number of neuron nodes are interconnected to tackle problems that represent the 
uniqueness of this network. Backpropagation is one of the most widely used ANN meth-
ods in the learning process. Figure 5 depicts a multilayer feed-forward neural network.

Table 2  The input variables associated with each feature combination

Feature combination Input variables

F1 v
3
i

F2 v
7
i

F3 v
8
i

F4 v
10
i

F5 v
8
i
, v10

i

F6 v
3
i
, v10

i

F7 v
4
i
, v10

i

F8 v
7
i
, v8

i
, v10

i

F9 v
4
i
, v8

i
, v10

i

F10 v
3
i
, v8

i
, v10

i

F11 v
3
i
, v7

i
, v8

i
, v10

i

F12 v
1
i
, v2

i
, v3

i
, v8

i
, v10

i

F13 v
1
i
, v2

i
, v3

i
, v7

i
v
8

i
, v10

i

F14 v
1
i
, v2

i
, v3

i
, v4

i
, v

8

i
, v10

i

F15 v
1
i
, v2

i
, v3

i
, v4

i
, v7

i
, v

8

i
, v10

i

F16 v
1
i
, v2

i
, v3

i
, v4

i
, v5

i
, v

6

i
, v7

i
, v8

i
, v10

i

F17 v
1
i
, v2

i
, v3

i
, v4

i
, v5

i
, v

6

i
, v7

i
, v8

i
, v9

i
, v10

i

Fig. 4  k-fold Cross-Validation process
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Three different layers are the main construction of the ANN, namely input, hidden, and 
output layers, such as the input layer [x1, x2, . . . , xN ]T , the hidden layer [h1, h2, . . . , hN ]T 
and the output layer [y1, y2, . . . , yN ]T . The model output, therefore, can be calculated by 
Eq. (3) [36]:

where m is the number of nodes at the input layer, while n is the number of nodes at the 
hidden layer. f  is a sigmoid transfer function, which will be the logistic function in this 
study, f (x) = 1

1+exp(−x) .  {αj , j = 0, 1, ..., n} is the weights vector that links the hidden 
layer and output layer and {βij , i = 1, 2, ...,m; j = 0, 1, ..., n} are the weights that link the 
input nodes with the hidden nodes.α0 and β0j are weights magnitude of arcs leading 
from the bias terms, which have values equal to 1.

The number of nodes in each hidden layer is optimized using SSO, PSO, CSO, and 
NNA. This study identifies the multilayer perceptron (MLP) for the BPNN model, while 
the Levenberg–Marquardt method is chosen as the training function.

Support vector regression

Support vector machine (SVM) is a supervised learning approach utilized for classifica-
tion, regression problems, or outliers’ detection. When two classes cannot be separated, 
a kernel function is employed to map the input space to another high dimension space 
[37]. In that new space, the input space can be separated linearly. There are three known 
kernel functions to conduct the separation: linear, polynomial, and radial kernel func-
tions [38]. Hence, SVR inherently employs some of the SVM properties. However, unlike 

(3)yi = α0 +

n
∑

j=1

αj f

(

m
∑

i=1

βijyt−i + β0j

)

+ εt

Hidden layers
Input layers

Output layers

1

2

1

2

3

Fig. 5  Feed-forward neural network
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SVM, SVR conducts the classification based on the regression process error measures 
based on the predefined threshold, see Fig. 6 [39].

The leading optimization can be formulated in Eq. (4), while the kernels used with the 
SVR are provided in Eqs. (5) and (6).

The SVR requires solving the following optimization problem:

where C > 0 is a constant that identifies the trade-off between the flatness of f  and 
assesses the tolerated amount of deviation to values larger than ε.

As we have mentioned, our input space represented by the input features, or the train-
ing dataset, is transferred into a new space with high dimensions, where the function φ 
is used. This is known as the kernel trick 

(

xi, xj
)

= φ(xi)T
(

xj
)

 . This research work uses 
kernel functions, namely radial basis ( RB ) and the linear ( linear ). They can be written as 
[40]:

where, γ (Gamma) is the kernel parameter and is estimated by the study optimization 
algorithms.

The choice of the two hyperparameters, C and γ , is critical in enhancing the accuracy 
of the forecasting models. The parameter C governs the empirical risk of SVR, while 
parameter γ controls the width of the radial basis function [41]. Researchers are accus-
tomed to determining these parameters either by their insights, prior knowledge from 
other studies [42], or by using approaches such as grid search [39]. Hence, C and γ are 

(4)

minimize
1

2
�w�2 + C

�
�

i=1

�

ξi + ξ∗i
�

subject to







yi − (wTφ(xi)+ b) ≤ ε + ξi
∗

(wTφ(xi)+ b)− yi ≤ ε + ξi
ξi, ξ

∗
i ≥ 0

(5)(RB): K
(

xi, xj
)

= e−γ
(

�xi−xj�
2
)

(6)(linear): K
(

xi, xj
)

= (xTi xj)

Fig. 6  The boundary margin for a linear SVR [39]
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optimally selected by utilizing SSO, PSO, CSO, and NNA to build the hybrid models. 
This is described in the next Sections.

Metaheuristic optimization algorithms

The setup of metaheuristic optimization algorithms, including SSO, PSO, CSO, and 
NNA, is described in this section. The evaluation function of these algorithms tries to 
minimize the nRMSE ; see Eq. (8).

SSO, PSO CSO, and NNA are explained in [43–46], respectively. The considered opti-
mization algorithms are initiated with 50 maximum iterations. For the linear function, 
the upper  and lower bounds for C are between [1, 10000], and for the RB function, the 
boundaries are in the range of [1, 10000] and [0.01, 3] for C and γ , respectively. For the 
BPNN models, the upper  and lower bounds of neurons at each hidden layer are set to be 
[1,50]. For CSO, the following paraments are set: h = 20 and p = 0.25.

Figure 7 depicts the hybrid forecasting algorithm that consists of ANN with PSO. Dur-
ing the algorithms, the optimal number of nodes at each hidden layer is developed, and 
their values are obtained until the lowest nRMSE are attained. For parameter tuning, 
tenfold cross-validation is used. Similar steps are used with other optimization algo-
rithms and SVR.

Fig. 7  The process of optimizing ANN configuration from the scope of PSO
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Model accuracy criteria

The forecasting methods under consideration are evaluated for accuracy and efficiency 
using the following statistical indicators: RMSE , nRMSE , MAE , and nMAE . These met-
rics show how close the measured values are to the predicted PV power output produced 
by the proposed models. These metrics are defined in the following equations [19]:

where n is the number of testing datasets; yi is the observed value of the PV power; yi,max 
is the maximum value in the testing dataset and fi is the forecasted value generated by 
the forecasting models. RMSE measures the deviation between observed PV power 
readings and predicted values [47], while the MAE is the mean of absolute value of the 
residuals (forecasting errors).

Results and discussion
The BPNN model was built using a multilayer perceptron (MLP) and the backpropaga-
tion algorithm, with the Levenberg–Marquardt method as the training function. Regard-
ing the number of layers, this study assumes three cases for BPNN:

•	 Case 1: BPNN 1—one input layer, one hidden layer, and one output layer.
•	 Case 2: BPNN 2—one input layer, two hidden layers, and one output layer.
•	 Case 3: BPNND—default BPNN.

The number of neurons (nodes) in the hidden layers in Case 1 ( BPNN 1) and Case 2 
( BPNN 2 ) are obtained based on the optimal number of nodes generated by SSO, PSO, 
CSO, and NNA. For Case 3 ( BPNND) is assumed to have one input layer, one hidden 
layer, and one output layer. In BPNND , the number of neurons selected equals the num-
ber of input features listed in Table 2. For example, the number of nodes is one with the 
input feature combination (F1), which consists of one input feature. Similarly, five nodes 
are set for the feature combination (F12), which has five input features. The input data 
in the BPNN  are the same as those used in SVR models. Table 4 summarizes the BPNN  
best models’ configuration by using different algorithms.

(7)RMSE =

√

√

√

√

1

n

n
∑

i=1

(yi − fi)
2
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√
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2
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For SVR models, the default parameters are selected based on the default values 
used in the LIBSVM tool. The default value of the parameter C is set to 1 for the radial 
basis and linear functions, while parameter γ is equal to (1/number of features). After 
that, the SVR and BPNN  models with the optimal parameters and network configura-
tions were employed to forecast the PV power generation. To evaluate the level of 
agreement between the predicted data and measured data, the models are examined 
based on RMSE , nRMSE , MAE , and nMAE . Table 3 compares the performance indi-
ces of the SVR and BPNN models.

Analysis of the forecasting models

In this section, the forecasting models are compared according to some criteria to 
examine their performance to predict the PV power output from the solar system. 
Results of the best forecasting models, corresponding optimized parameters ofSVRRB

,SVRLinear,BPNN 1 , and BPNN 2 models and the statistical errors of the forecasting 
models are shown in Tables 3, 4, and 5, respectively. Figures 8 and 9 display graphical 
representations of the goodness of fit tests of RMSE (in Fig. 8) and MAE (in Fig. 9) in 
the form of heat maps. These figures compare all the 323 models considered at the 
study site. These are four forecasting models, SVRRB,SVRLinear,BPNN 1 , and BPNN 2, 
which obtain their parameters for each of the 17 feature combinations using four 
optimization approaches, SSO, PSO, CSO, and NNA, in addition to the three default 
models SVRD

RB,SVRD
Linear , andBPNND.

The statistical errors are reported for the best feature combination, which is F14 in 
Table 2.

The SVR parameters and BPNN network configurations are reported for the best 
feature combination, which is F14 in Table 2.

Table 3  Statistical errors of the best-proposed forecasting models using SSO , PSO , CSO and NNA

SVRRB SVRLinear BPNN
1

BPNN
2

SSO RMSE (kW) 4.4751 10.6940 4.8460 5.0742

nRMSE (%) 4.3374 10.3649 4.6969 4.9181

MAE (kW) 2.5699 4.8621 3.1713 3.2365

nMAE (%) 2.4909 4.7125 3.0737 3.1369

PSO RMSE (kW) 4.487 9.1334 4.9735 4.5564

nRMSE (%) 4.349 8.8524 4.8205 4.4223

MAE (kW) 2.5728 4.8617 3.2410 2.8739

nMAE (%) 2.4936 4.7121 3.1413 2.7854

CSO RMSE (kW) 4.4795 10.6932 5.0788 4.5692

nRMSE (%) 4.3417 10.3642 4.9226 4.4286

MAE (kW) 2.5661 4.8637 3.3053 2.9614

nMAE (%) 2.4871 4.7141 3.2036 2.8703

NNA RMSE (kW) 4.4889 10.6732 5.0281 4.6608

nRMSE (%) 4.3418 10.4944 4.8734 4.5175

MAE (kW) 2.5752 4.8647 3.2662 2.9839

nMAE (%) 2.4963 4.7311 3.4168 2.8921
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Hybrid forecasting models vs. default forecasting models

Tables  3, 5, Figs.  8, and 9 show that: (i) Overall, the proposed forecasting models 
optimized by SSO, PSO, CSO, and NNA outperform the default forecasting models 
in predicting the PV power output with low RMSE and MAE values. Regarding mod-
els fitting accuracy with the SVRRB models, the proposed models with the optimized 
hyperparameters show improvements compared to default models, where RMSE 
improved between 12.001 and  50.079% and MAE improved between 1.80291 and 

Table 4  Models’ parameters for SVR models and BPNN network configuration (SVR models: 
ε = 0.001)

SSO PSO CSO NNA

C γ C γ C γ C γ

SVRRB 9239.9 2.9384 9854 2.8795 9136.8 2.85636 9203.64 2.948563

SVRLinear 138.5539 – 0.63188 – 4461.461 – 64.67852 –

SSO PSO CSO NNA

Hidden Hidden Hidden Hidden Hidden Hidden Hidden Hidden

Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2 Layer 1 Layer 2

BPNN
1 19 – 18 – 17 – 16 –

BPNN
2 15 7 19 9 19 6 18 10

Table 5  Best proposed forecasting models vs. default models based on SVR and ANN

CSO − SVRRB SVR
D

RB
PSO − SVRlinear SVR

D

linear
SSO − BPNN

1
CSO − BPNN

2
BPNN

D

RMSE (kW) 4.4795 8.9733 9.1334 9.9392 4.8460 4.5692 5.2289

nRMSE (%) 4.3417 8.6972 8.8524 9.6334 4.6969 4.4286 5.0681

MAE (kW) 2.5661 5.2218 4.8617 4.9399 3.1713 2.9614 3.2892

nMAE (%) 2.4871 5.0612 4.7121 4.7879 3.0738 2.8703 3.1879

Fig. 8  RMSE values of the study models with the considered feature combinations
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59.8847%. Similarly, the prediction models with the BPNN 1 and BPNN 2 using the 
proposed models with the optimal network configurations have better performance 
with 1.883–46.964% and 2.0576–47.007% improvement in the RMSE and MAE val-
ues, respectively, compared to the BPNND models.

Using SVRRB models with different optimization algorithms and different feature 
schemes, Table 6 and Fig. 8 show that RMSE values are ≤ 23.12 kW , while RMSE val-
ues with the default models are ≤ 28.24 kW . With the feature combination (12), for 
example, the value of RMSE with the best model ( SSO − SVRRB ) is 4.7500 kW, and 
MAE is 2.7617 kW. On the other hand, the SVRD

RB gives an RMSE value of 9.206 kW 
and MAE of 5.269  kW. Similarly, the reduction in the error metrics values has 
been attained with the proposed BPNN  models. For instance, considering the fea-
ture combination (9), the value of nRMSE using BPNN 1 and BPNN 2 are 5.767% and 
5.804%, respectively, while the BPNND generates an error value of 7.25%. Neverthe-
less, the degree of improvement is somewhat low in the SVRLinear models with the 
optimized parameters as a comparison to the SVRD

Linear models. This can be attrib-
uted to the value of the optimized hyperparameter, C , which has close values to the 
default ones.

In addition, Figs. 8, 9, and Table 5 show that the BPNN with the default models has 
better performance than the default models of the SVR with the radial base and the 
linear functions. This is due to the default parameters that are selected for the SVR 
models. Hence, the associated parameters should be chosen appropriately to obtain 
the best forecasting performance of the SVR models. The BPNN default models, 
on the other hand, show good performance compared to the proposed models. For 
instance, the best model using SSO − BPNN 1 and CSO − BPNN 2 give RMSE values of 
4.8460 kW and 4.5692 kW, respectively, while the BPNND model generates an error 
value of 5.2289 kW.

Fig. 9  MAE values of the study models with the considered feature combinations
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Table 6  The Statistical error results of different sets of feature combinations

F1

SVRRB SVRLinear BPNN
1

BPNN
2

SSO RMSE (kW) 14.4960 31.3237 14.6058 14.5608

nRMSE (%) 14.0192 30.3600 14.1565 14.1128

MAE (kW) 9.9074 27.6873 10.2919 10.3007

nMAE (%) 9.6023 26.8354 9.6026 9.9837

PSO RMSE (kW) 14.4938 31.2859 14.5992 14.5939

nRMSE (%) 14.0171 30.3234 14.1501 14.1449

MAE (kW) 9.8995 27.6931 10.3278 10.3009

nMAE (%) 9.5750 26.8411 9.5950 9.9840

CSO RMSE (kW) 14.5190 32.1062 14.5996 14.6109

nRMSE (%) 14.0415 31.1184 14.1505 14.1614

MAE (kW) 9.9408 27.7186 10.2778 10.3139

nMAE (%) 9.5351 26.8658 9.6350 9.9966

NNA RMSE (kW) 14.5210 32.0508 14.6058 14.6008

nRMSE (%) 14.0437 31.0647 14.1316 14.1516

MAE (kW) 9.8935 27.7093 10.2919 10.2736

nMAE (%) 9.5712 26.8568 10.5862 9.9575

F12

SVRRB SVRLinear BPNN
1

BPNN
2

SSO RMSE (kW) 4.7500 10.9501 5.5316 5.1200

nRMSE (%) 4.6039 10.6132 5.3614 4.9624

MAE (kW) 2.7617 4.8848 3.6254 3.4040

nMAE (%) 2.6768 4.7345 3.5139 3.2993

PSO RMSE (kW) 4.7683 9.5483 5.7413 4.9426

nRMSE (%) 4.6216 9.2545 5.5646 4.7906

MAE (kW) 2.7563 5.0958 3.7354 3.1756

nMAE (%) 2.6715 4.9390 3.6205 3.0779

CSO RMSE (kW) 4.7799 10.9102 5.1076 5.7279

nRMSE (%) 4.6328 10.5746 4.9504 5.5516

MAE (kW) 2.7943 4.8865 3.3402 4.0031

nMAE (%) 2.7083 4.7361 3.2374 3.8800

NNA RMSE (kW) 4.7683 10.9497 5.5316 5.7289

nRMSE (%) 4.6216 10.6129 5.2403 5.5526

MAE (kW) 2.7563 4.8847 3.6328 3.4888

nMAE (%) 2.6715 4.7344 3.5210 3.3815

F16

SVRRB SVRLinear BPNN
1

BPNN
2

SSO RMSE (kW) 5.1403 10.9640 5.4770 5.1566

nRMSE (%) 4.9206 10.6267 5.3085 4.9980

MAE (kW) 3.3201 4.8847 3.5821 3.3352

nMAE (%) 3.2249 4.7344 3.4719 3.2326

PSO RMSE (kW) 5.2250 10.9619 5.4168 5.5929

nRMSE (%) 5.0027 10.6246 5.2501 5.4208

MAE (kW) 3.4480 4.8830 3.5586 3.6938

nMAE (%) 3.3419 4.7328 3.4492 3.5802
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Performance analysis using proposed models

From Tables 3, 6, Figs. 8, and 9, and by comparing different forecasting models using 
the proposed models,  SVRRB models can be considered the best prediction model 
to estimate the PV power generation in the study site. SVRRB has better error met-
rics values than SVRLinear , BPNN 1 , and BPNN 2 with low RMSE and MAE values. 
For instance,PSO − SVRRB models are better than PSO − SVRLinear , PSO − BPNN 1 , 
and PSO − BPNN 2 for all the considered feature combinations. This result is also 
found with other optimization methods. BPNN  models, on the other hand, have a 
better performance than the SVR models with the linear function and promising 
performance compared to the RB models. As a comparison between the proposed 
BPNN  models, overall BPNN 2 models have led to better prediction capability than 
the BPNN 1 . PSO − BPNN 2 with the feature combination (11), for example, gave an 
nRMSE of 3.251% and nMAE values of 3.251%, while PSO − BPNN 1 resulted in error 
values of 6.297% and 3.819%, respectively. This implies that using more than one hid-
den layer with optimized node numbers leads to higher forecasting accuracy than a 
single hidden layer.

Performance analysis of optimization algorithms

Furthermore, as a comparison between the performance of the optimization algo-
rithms, more than one optimization approach has the same accuracy and perfor-
mance in estimating the parameters of the forecasting models. PSO and SSO methods 
have a similar or negligible difference in terms of estimating parameter values. Nev-
ertheless, the three optimization algorithms show different performances in obtain-
ing the C parameter of the linear function. Furthermore, linear models performed the 
worst because of their limited ability to deal with nonlinearity in input data. Figure 10 
shows the performance of all four optimization algorithms with all the forecasting 
models. This figure proves that the proposed hybrid forecasting models where the 
hyperparameters of SVRLinear and SVRRB and the configuration of  BPNN 2 are selected 
optimally can track the actual values of the PV power output precisely compared to 
default models.

Table 6  (continued)

F16

SVRRB SVRLinear BPNN
1

BPNN
2

CSO RMSE (kW) 5.1450 10.9634 5.6816 5.1768

nRMSE (%) 5.0152 10.6261 5.5068 5.0176

MAE (kW) 3.3145 4.8846 3.6281 3.3326

nMAE (%) 3.2095 4.7343 3.5165 3.2301

NNA RMSE (kW) 4.7250 10.9593 5.4770 4.8391

nRMSE (%) 4.5027 10.6221 5.7398 4.6902

MAE (kW) 3.0532 4.8852 4.0252 3.0557

nMAE (%) 2.7419 4.7349 3.9013 2.9617
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Best feature combination

From Tables 3, 6, Figs. 8, and 9, and by comparing different feature combinations, we 
can see that the best forecasting model is attained with the feature combination (F14). 
This combination includes the month in the year, the day of the month, the hour of 
the day, air temperature (◦C) , global horizontal irradiance, GHI (Wh/m2), and PV 
power output at the same hour on the previous day (kW). Results show that the best 
forecasting outcomes for all considered models are obtained using this feature com-
bination. Regarding other feature combinations, using only global horizontal irradi-
ance (F3), PV power output at the same hour on the previous day (kW) (F4), or a mix 
between them could lead to satisfactory forecasting results. GHI provided good accu-
racy results due to its significant impact on the PV system production, while the lag 
power observation is due to the nature of solar radiation in the study site. In Riyadh 

Fig. 10  The performance of the hybrid forecasting models with the optimization algorithms

Fig. 11  The importance of features based on the Decision Tree (DT) algorithm
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city, the nature of the weather is less variable, and there are two seasons in the year, 
summer and winter. Therefore, the power output of the previous day may influence 
the production of the next day. This is depicted in Fig. 11 through the scatter plots of 
the measured vs. predicted PV power output values acquired by the SVRRB with the 
CSO algorithm. The subplot in green displayed in Fig. 12 indicates the best prediction 
model with the best feature combination ( CSO − SVRRB with F14).

Furthermore, the Decision Tree (DT) algorithm for feature selection is used to vali-
date the conclusion on the combination of the optimal features [48]. Figure  11 dis-
plays the scores for input features according to how relevant they are to predicting 
the PV power output. Figure  11 reveals that the features: PV power output at the 
same hour on the previous day (kW), global horizontal irradiance, GHI (Wh/m2) , 
Direct normal irradiance, DNI (Wh/m2) , the hour of the day, and air temperature (◦C) 
have the best five scores among the other features. This correspond to the best feature 
combination obtained in this study.

Fig. 12  Scatter plots of the measured vs. observed PV power output using SVRRB with CSO algorithms with 
all feature combinations
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Conclusion and future work
Support Vector Regression (SVR) with radial basis and linear kernel functions and Back-
propagation Nural Network (BPNN) models were investigated in this study to predict 
the PV output power of the rooftop PV unit placed on a mosque located in Riyadh city, 
Saudi Arabia. The penalty factor ( C) and kernel parameter ( γ ) of the SVR models with 
the radial and linear functions and the number of hidden nodes of the artificial neu-
ral network were optimized using four optimization algorithms. These algorithms are 
Social Spider Optimization (SSO), Particle Swarm Optimization (PSO), Cuckoo Search 
Optimization (CSO), and Neural Network Algorithm (NNA). Different combinations of 
input variables are used in this study to select the optimal set of input features. By ana-
lyzing the results of the best forecasting model and the performance of the estimation 
algorithms, the conclusion can be summarized as follows:

1.	 According to the model accuracy criteria, the proposed hybrid PV power forecast-
ing models outperform the default models using SVR with the RB, linear functions, 
and BPNN algorithms. Overall, results indicate that the proposed models with the 
optimized hyperparameter of the SVR with radial basis outperform other models in 
forecasting PV power output at the study site.

2.	 Regarding the model fitting accuracy with the SVRRB , the proposed models show 
improvements compared to the default models, where RMSE improved between 
12.001 and 50.079% and MAE improved between 1.80291 and 50.8847%. Similarly, 
the prediction models with the BPNN 1 and BPNN 2 using the proposed models, with 
optimal network configurations, have better performance with 1.883–46.964% and 
2.0576–47.007% improvement in the RMSE and MAE values, respectively, compared 
to the default BPNN  models.

3.	 The proposed BPNN models exhibit a good forecasting outcome that can be com-
pared with the SVR radial basis models. On the other hand, the SVR based on the 
linear function showed limited forecasting performance due to its limited capability 
to capture the nonlinearity in the input dataset.

4.	 As a comparison between the estimation algorithms, the four optimization algo-
rithms almost have the same performance, demonstrating their capacity to select 
SVR parameters and BPNN network configurations.

Finally, the framework proposed in this study can be used to forecast the PV power 
output in other countries. However, there is still room for further investigation to 
develop a model that provides high-accuracy results to predict the PV power forecast. 
Furthermore, even though the current work primarily focuses on the possible improve-
ment of SVR and ANN by optimizing their parameters, the parameters of other algo-
rithms can also be investigated, such as random forests and decision trees. Another 
possible direction is to use dimensionality reduction models to select the features for 
our input vector. In this study, different feature combinations are formulated based on 
their correlation with the output power. Thus, other researchers can examine the per-
formance of some dimensionality reduction models, such as the Monte Carlo algorithm, 
Boruta feature selection algorithm, and grouping genetic algorithm, to obtain the opti-
mal set of features. Finally, further forecasting approaches can be applied, including the 
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currently popular deep learning methods based on neural networks, such as recurrent 
neural networks and long-term short memory.
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