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Robust Under-Frequency Load Shedding With
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Abstract—Under-frequency load shedding (UFLS) is an impor-
tant measure for tackling low-frequency events caused by
load-generation imbalance. However, the uncertainty of wind
power amplifies power imbalances and can potentially impair
frequency stability. Electric vehicles (EVs) present a more effec-
tive means for addressing this issue compared to load shedding.
However, EVs have several limitations such as commute random-
ness. To ensure frequency stability and simultaneously reduce
load shedding, a bi-level confidence-interval-based optimal strat-
egy is proposed to enable the participation of EVs in UFLS,
where the uncertainties of wind power and the commute ran-
domness of EVs are estimated using a non-parametric kernel
density estimation (KDE) method. In bi-level optimization, the
upper level reduces the dependency on commute randomness
and the wind power uncertainty during load-shedding events.
Further, the upper-level solutions are sent to EV charging sta-
tions for emergency dispatch. By contrast, at the lower level, an
approximation-function-based priority is proposed to optimize
the task allocation. Simulation results show the advantages of the
proposed approach in maintaining a stable frequency compared
with traditional and adaptive UFLS schemes.

Index Terms—Electric vehicle, robust optimization, under-
frequency load shedding, uncertainty estimation, wind power.

NOMENCLATURE

Variable

l The number of examples
bw Bandwidth
α, β Confidence index
Uα

error Upper bound of wind power
Lα

error Lower bound of wind power
�PWind Wind power prediction error
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U A cluster of uncertainty sets
th-w Departure time from home to work
tw-h Return time from work to home
μh-w Expected value of departure time
μw-h Expected value of return time
σh-w Standard deviation of departure time
σw-h Standard deviation of return time
θ Shape parameter of gamma distribution
δ Scale parameter of gamma distribution
γ Standard deviation of standardized normal

distribution
kw Shape parameter of Weibull distribution
cw Scale parameter of Weibull distribution
�Ei

t Variation of EVs’ number of the ith sampling at
time t

J Number of Monte Carlo simulations
�EEV

t Variation of EVs’ number at time t
Uβ

t Upper bound of the variation of EVs’ number at
time t

Lβ
t Lower bound of the variation of EVs’ number at

time t
�Nt

EV Unknown number variation of EVs
Pmin Lower bound of EV power
Pmax Upper bound of EV power
PEV

i The power of an EV
PGen Generation power
PWind Wind power
PLoad Load power
Pd Power deficiency
Pd % A certain percentage of power deficiency
Pshed Load shedding plan
�PEV EV power injection
Hi Inertia constant of the ith generator
fi System frequency
fn Nominal frequency
fc Frequency of the equivalent inertial center
ξ Equivalent inertia constant of the system
�PLoad Load shedding amount
Pm,k

EVCS Power of the kth EV charging station for the mth

round
NEVCS Number of EV charging stations
Pk

min,EVCS Lower bound of the power of an EV charging
station
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Pk
max,EVCS Upper bound of the power of an EV charging

station
SOC State of charge of an EV
PEV

n,k,0 Initial power of the nth EV before UFLS
Tcharge Charge time of charge
Tdischarge Discharging of discharge
a, b, c Weighted indices
Qsoc Willingness index contributed by the SOC
QPcharge Willingness index contributed by the charge

power
QT Willingness index contributed by the charge time
QEV Willingness index of an EV
PEV

n,k,m The nth EV power in the mth round of UFLS.

Function

f Probability distribution function
K Kernel function
F Cumulative density function
F−1 Quantile function

 The gamma function
ci

EV(t) The curve of EV number in the ith simulation.

I. INTRODUCTION

OWING to increasing concerns about sustainable devel-
opment and environmental pollution, renewable energy

resources—such as wind power—are replacing non-renewable
energy resources in modern power systems. However, the
randomness and uncertainty of renewable energy resources
interfere with the load-generation balance, thus increasing
the risk of system instability. Ensuring frequency stability
while considering the randomness and uncertainty of renew-
able energy sources is becoming a significant challenge to the
safe operation of power systems. Under-frequency load shed-
ding (UFLS) aims to ensure frequency stability for the safe
operation of power systems. UFLS can deal with this problem
by automatically tripping selected loads to prevent frequency
collapse and has attracted considerable attention [1]–[3].

In general, implementing UFLS includes estimating the
power deficiency and tripping selected loads [4]. The esti-
mation of the power deficiency determines the amount of
load to be shed [4]. Overestimation results in unnecessary
load shedding, while underestimation leads to unacceptable
frequency deviations. The key to achieving better performance
during UFLS is the accurate estimation of power deficiency.
Therefore, the rate of change of frequency [5]–[7], second
derivative of frequency [8], and gradient techniques [9] were
investigated to assess power shortages. In [5], an equiva-
lent inertial center was used to improve estimation accuracy
while considering the rate of change of frequency. The swing
equation of the generator was used to estimate the power
deficiency [10]. In [11], the swing equation, ramp-up limit,
and the rated capacity of generators were employed to support
an appropriate power deficit estimation.

Attempts to improve approaches of power deficit estimation
have been paid much attention to. In particular, the uncertainty
in renewable energy generation such as distributed generation
can affect the power imbalance estimations [12]–[14] and even

causes severe system instability under extreme situations such
as blizzards or heavy snow. Prior attempts have been made
to cope with this issue. For instance, in [12], a power defi-
ciency was estimated based on the frequency derivative in
each shedding round to consider the influence of renewable
energy generation. Reference [13] used the Markov model to
calculate the outage probability of renewable energy genera-
tion, but this model may trigger an unnecessary load shedding
while there exists no renewable generation loss. In [14], a
probabilistic UFLS method is proposed to consider the uncer-
tainties of system parameters including the uncertainties of
inertia time constant, load damping, and distributed genera-
tion deficiency. An optimal robust UFLS scheme is proposed
to shed the minimum load [15], where a scenario reduction
algorithm is used to reduce the uncertainties caused by the
generation deficiency of generators, variations in renewable
energy resources, etc. Therefore, considering the probability
of renewable energy generation loss has become an effective
way to deal with the uncertainties during UFLS. In reality, an
increase in renewable energy generation due to its uncertainty
has also a significant influence on UFLS, as it can reduce
the gap between load-generation imbalance during UFLS. If
neglecting this influence, the UFLS strategy will result in
unnecessary load shedding. However, few attentions are paid
to this point.

Tripping selected loads is another concern that has been
extensively addressed in the literature. Most researchers
have focused on more appropriate locations and less load
shedding [16]–[18]. For instance, an advanced load model
related to voltage has been proposed to select where and
how to shed loads instead of using an impedance model [7],
but the load model imprecisely depicted the real load.
The authors of [16] investigated a multiport network-based
model to quickly search for the appropriate size and loca-
tion of load shedding by considering the transient voltage
on branch lines. In [17], a power-sensitivity-based approach
was proposed to reduce the computational burden. Meanwhile,
many researchers have noticed an increased risk of voltage
instability due to arbitrary load shedding. Reference [18] ana-
lyzed the relationship between transient voltages and loads,
and power flow tracing was proposed to prevent voltage
instability due to load shedding.

Moreover, new flexible loads have attracted the attention
of researchers owing to their energy-storage characteristics.
Consequently, avoiding load shedding is becoming possible
through the use of battery energy-storage systems (BESSs),
one of the many key factors in the future of the smart grid.
In [19], the control scheme of BESSs was investigated to avoid
unnecessary load shedding. In [20], the power injection of
BESSs was employed as an ancillary service and activated
before load shedding. However, the extensive use of BESSs is
limited due to expensive investment, the low energy density
and complex control [21], etc.

Distributed flexible loads were also investigated to pro-
vide power injection under contingencies. In [22], dispatches
of smart refrigerators and water heaters were conducted for
UFLS. However, the strict constraints of intelligent refrig-
erators and water heaters limit their usefulness for periods
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of UFLS. For instance, during continuous load shedding,
any sharp increase in indoor temperature caused by atmo-
spheric temperature can easily result in user discomfort and
complaints. Electric vehicles (EVs) are a type of distributed
energy-storage system that can be employed for UFLS [23].
This is because the capacity for UFLS—that is, the deviation
between real-time power and discharging limit for an EV—can
be adjusted continuously. In particular, EVs can provide the
strong power support for the power grid due to the fast increase
of EVs’ number in recent years, and thus the vehicle-to-grid
technology is becoming an increasing attention worldwide.

In this study, we aimed to overcome power deficiency during
UFLS by discharging selected EVs in the case of wind power
and EV uncertainties. For wind power uncertainty, a wind
power prediction technique—that is, the bidirectional long
short-term memory (Bi-LSTM) method [24]—is employed;
the prediction error is estimated using a non-parametric kernel
density estimation (KDE) method [25]. Furthermore, an EV
uncertainty that the users can spontaneously drive away from
charging stations, thereby decreasing the discharging capacity,
is considered; this uncertainty is addressed by employing the
non-parametric KDE method. Subsequently, combined with
the two modeling in wind power and EV uncertainties, a robust
optimization strategy for UFLS is proposed. Furthermore, for
appropriate discharging selection of EVs, a priority list tech-
nique is proposed to speculate users’ preferences and identify
EV discharging conditions. The contributions of this study are
as follow.

• An optimal approach is proposed to coordinate load
shedding and EVs to reduce the impact of wind power
uncertainty on power balance in an emergency, consid-
ering wind power prediction, traffic network, EV travel
behaviors, EV users’ willingness, etc.

• An approximation function is proposed to express the pri-
ority of EVs in participating in UFLS, considering EVs’
willingness, EV charging power, etc.

• A non-parametric KDE method without considering types
of probability distribution is firstly used to model the
impact of EV commuting randomness on UFLS.

• Comparisons with other existing methods verify the
robustness and effectiveness of the proposed approach in
performing UFLS.

The remainder of this paper is organized as follows.
In Section II, the problem of EV dispatch for UFLS is
described. In Section III, a bi-level optimization method
is provided. Simulations and discussions are presented in
Section IV. Finally, conclusions are presented in Section V.

II. PROBLEM DESCRIPTIONS

A. The Framework of UFLS With Wind Power and EVs

As shown in Fig. 1, a hierarchical framework on UFLS is
proposed to consider wind power uncertainty and at the same
time, reduce load shedding as much as possible. When a low-
frequency event occurs, in the control center, the power deficit
is calculated based on the system frequency from the phasor
measurement unit (PMU), and at the same time, an intelligent
algorithm is used to perform the robust dispatch considering

Fig. 1. The hierarchical framework of UFLS with wind power and EVs.

EV users’ demands and wind power uncertainty. In addition,
optimal solutions are sent to EV charging stations or dedicated
relays in the system for load shedding.

In EV charging stations, the capacity of EVs is predicted
and uploaded to the control center in real time, and the solution
from the control center is optimally distributed between EVs
based on their state of charge (SOC) and charging power.

B. The Impact of Wind Power Uncertainty on UFLS

While the frequency drops below the threshold value, UFLS
will be activated to stop the frequency drop. However, wind
power uncertainty has a significant impact on this action
and may even harm the frequency stability owing to sudden
changes in power deficiency [12], [26]. For instance, when
wind power suddenly drops during UFLS, the gap between
supply and the load will be amplified. In this condition,
inappropriate power deficiency estimation will impact the
frequency stability due to neglecting wind power uncertainty.
Therefore, the influence of wind power uncertainty on UFLS
must be compensated to ensure system frequency stability.
This compensation is closely related to the prediction accuracy
of wind power—that is, inaccurate prediction will increase
frequency instability due to an inappropriate load shed-
ding. Therefore, to ensure frequency stability under extremely
adverse conditions, an appropriate robust method should be
used to estimate the impact of wind power on UFLS while
avoiding related risks.

C. The Uncertainty of the Capacity of EVs for UFLS

The capacity of an EV charging station is equal to the sum
of the capacity of each EV at the station and is related to the
number of connected EVs. For instance, while EVs drive away
or do not take part in UFLS, the number of connected EVs will
be reduced, and the capacity of EVs will decrease. Moreover,
the randomness of EV users’ actions—such as commuting and
shopping—reduces the number of connected EVs, leading to
a decrease in the capacity of EV charging stations. If the num-
ber of EVs decreases sharply and rapidly during UFLS, the
power deficit is exacerbated, which can damage the frequency
stability. Consequently, the impact of the uncertain capacity
of EVs should be addressed, and an effective counteraction
should be determined.
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Fig. 2. Mechanism of the priority of EVs.

D. The Priority of EVs With User’s Willingness

During a load-shedding task, EV charging stations classify
EVs in a queue and then dispatch them in order. As shown in
Fig. 2, the EVs at the top of the queue are fully discharged.
This is because EV battery SOC levels are high enough for
the next trip, and EV users would like to sell the redundant
power to the power grid for revenue. The EVs enlisted second
in the queue are not fully discharged, as EV uses would like
to get the revenue, although battery SOC levels are not high
enough. In some cases that EV battery energy cannot satisfy
the next trip, these EVs will have the lowest priority in the
queue and maintain charging. Therefore, the classification cri-
teria for EVs are not only based on capacity, but also based
on users’ willingness. If any user chooses to sell EV-owned
redundant power at a high SOC level, the EV should be placed
at the front of the queue. To respond to UFLS and simultane-
ously consider users’ willingness, EV charging stations should
be authorized to determine their location in the queue. With
this consideration, an approximation function will be proposed
to describe users’ willingness illustrated in Fig. 2. The func-
tion will rank EV users’ priority according to EV SOC levels,
charge power, etc.

III. BI-LEVEL OPTIMIZATION FOR UFLS WITH

UNCERTAINTIES OF WIND POWER AND EVS

A. Uncertainty Modeling of Wind Power

A confidence-interval-based model is used to describe wind
power uncertainty, which significantly reduces its impact on
UFLS. While modeling, state-of-the-art methods–such as bidi-
rectional long short-term memory (bi-LSTM) [24]–are used
to predict wind power. At the same time, the non-parametric
KDE method is used to model the prediction error [27],
because it does not require any assumptions about the proba-
bility distribution function of the error.

For the non-parametric KDE technique, the Gaussian kernel
function is commonly used and can consistently perform well
in real-world scenarios [27]. Thus, we can obtain the ferror

as (1):

ferror(�PWind, bw)

= 1√
2π lbw

l∑

i=1

exp

(
−1

2

(
�PWind − Ei

bw

)2
)

(1)

Coherently, with the cumulative density function Ferror and
the quantile function F−1

error are calculated, the upper and lower

bounds with a confidence level of 1-α can be expressed as
⎧
⎨

⎩

Uα
error = F−1

error(α)

Lα
error = F−1

error

(
1 − α

2

)

U
{
�PWind

∣∣Lα
error ≤ �PWind ≤ Uα

error

}
.

(2)

B. Uncertainty Modeling of the Capacity of EVs

As the variation of connected EVs is greatly influenced by
EV travel, a trip chain-based approach [29], [30] is considered
to simulate their daily operation. The number and variation of
EVs connected to the power grid are then modeled using a
non-parametric KDE approach.

Based on the statistics from the U.K.’s 2016 National Travel
Survey [31], the EV travel data is simulated using [32] as a
reference. A typical trip chain in a day consists of the departure
from the home (H), the work (W) in the morning, and arriving
at howe (H) in the afternoon, which is abbreviated as H-W-H.

The return time tw-h and the initial departure time th-w
of H-W-H are fit with the standard distributions [33] and
calculated as follows.

f (t;μ, σ) = 1

σ
√

2π
exp

(
− (t − μ)2

2σ 2

)
(3)

Based on individual preferences, the departure time is dif-
ferent from EV to EV. Therefore, the Gamma distribution is
used to fit the expected value of the departure time μh-w, as
shown in (4) [33].

fGamma(μh−w; δ, θ) =
{

θ−δ


(δ)
μδ−1

h−w exp
(−μh−w

θ

)
μh−w ≥ 0

0 μh−w < 0

(4)

The standard deviation σh-w fits the standardized normal
distribution [33], and it is mathematically illustrated as

fNorm(σh−w; γ ) =
∣∣∣∣∣

1

γ
√

2π
exp

(
−σ 2

h−w

2γ 2

)∣∣∣∣∣ (5)

The expected value of the return time μw-h sampled from
the Weibull distribution is shown in (6) [33]:

fWeibull(μw−h; kw, cw)

=
⎧
⎨

⎩

(
kw
cw

)(
μw−h

kw

)kw−1
exp

(
−
(

μw−h
cw

)kw
)

μw−h ≥ 0

0 μw−h < 0
(6)

To include the change that EVs in different residential areas
are with different travel behaviors, a traffic network topol-
ogy with different speed limits of the road is employed [32].
Note that in the traffic network, the destinations of EVs are
randomly sampled, and at the same time, the Dijkstra and
Floyd-Warshall algorithm is used to guide the drive [34].
Considering the traffic jam, we can obtain information about
the EV travel timetable, such as the arrival times at destina-
tions. Therefore, we can calculate the number of EVs at each
destination in a time step and obtain the cEV(t) curve of their
variation. Assuming that every destination has a charging sta-
tion, the cEV(t) curve is the description of the number of EVs
at a charging station. Therefore, the variation in the number
of EVs can be calculated using (7):

�Ei
t = ci

EV(t) − ci
EV(t − 1) i = 1, . . . , J (7)
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Using these conditions, the non-parametric KDE model is
used to estimate the variation number of EVs to provide a
probability distribution function using (8).

f EV
t

(
�EEV

t , bw
) = 1√

2πJbw

J∑

i=1

exp

(
−1

2

(
�EEV

t − �Ei
t

bw

)2
)

(8)

The cumulative density function FEV and the quantile func-
tion F−1

EVcan be used to evaluate the upper and lower bounds
of the number variation of EVs at time t. By providing β, the
upper and lower bounds with a confidence level of 1-β have
the following expression.

⎧
⎪⎨

⎪⎩

Uβ
t = F−1

EV(β)

Lβ
t = F−1

EV

(
1 − β

2

)

Lβ
EV ≤ �Nt

EV ≤ Uβ
EV

(9)

For a charging station, the capacity variation of EVs at time
t, a cluster of uncertainty set U, is calculated based on the
interval of the number variation, as in (10).

U

⎧
⎨

⎩�Nt
EV

∣∣∣∣∣∣
PminLβ

EV ≤
�Nt

EV∑

i=1

PEV
i ≤ PmaxUβ

EV

⎫
⎬

⎭. (10)

C. Robust-Optimization-Based UFLS

While ignoring network losses, the generation and load are
balanced, as

PGen + PWind = PLoad (11)

During an emergency, a power deficiency Pd is often calcu-
lated based on the frequency and the first-order time derivative,
as described in (12) [12]. At the same time, a shedding
plan Pshed must be implemented to ensure frequency stabil-
ity, as shown in (13), which considers wind power fluctuation
�PWind and EV injection �PEV.

{
Pd = ∑

Pd,i = 2
∑

Hi
fn

dfc
dt = ξ

dfc
dt

fc =
∑

Hifi∑
Hi

, ξ = 2
fn

∑
Hi

(12)

{
Pd + PGen + PWind + �PWind = PLoad + Pshed
Pshed = �PLoad + �PEV

(13)

To minimize the load shedding �PLoad, we can set an objec-
tive function combined with (11) and (13). While considering
the uncertainty of wind power and EVs, the objective is formed
as a robust optimization, mathematically modeled as

{
max min �PLoad

= (�PWind + Pd − �PEV)
(14)

Furthermore, to maintain consistent power injection to the
power system, the power of EV charging stations should be
formed and limited, as in (15).

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�PEV = ∑NEVCS
k=1 Pm,k

EVCS −∑NEVCS
k=1 Pm−1,k

EVCS
Pm,k

EVCS ≤ Pm−1,k
EVCS∑�Nt

EV
i=1 PEV

i + Pk
min,EVCS ≤ Pm,k

EVCS ≤ Pk
max,EVCS

+∑�Nt
EV

i=1 PEV
i

(15)

TABLE I
RELATIONSHIP BETWEEN CHARGE STATE AND QUEUE

Note that in (15), the second constraint is used to con-
duct the behaviors of EV charging stations from charging
to discharging, as the charging power is expressed with the
positive number and the discharging power with the nega-
tive number. Combined with (2), (10), (14) and (15), the
Robust-Optimization-based UFLS with EVs (RO-UFLS-EV)
is proposed as (16). By solving (16), a tripping round of the
shedding plan can be obtained.
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

max�PWind,�Nt
EV

minPm,k
EVCS

�PLoad

=
(
�PWind + Pd −∑NEVCS

k=1 Pm,k
EVCS +∑NEVCS

k=1 Pm−1,k
EVCS

)

U
{
�PWind

∣∣Lα
error ≤ �PWind ≤ Uα

error

}

U
{
�Nt

EV

∣∣∣PminLβ
EV ≤ ∑�Nt

EV
i=1 PEV

i ≤ PmaxUβ
EV

}

Pm,k
EVCS ≤ Pm−1,k

EVCS∑�Nt
EV

i=1 PEV
i + Pk

min,EVCS ≤ Pm,k
EVCS ≤ Pk

max,EVCS

+∑�Nt
EV

i=1 PEV
i .

(16)

D. Priority Optimization of EVs

As discussed previously, the charging station ranks EVs
based on users’ preferences and EV charging conditions, called
the priority list. While optimizing the priority list, scenarios
such as the EV SOC and queue location are considered. For
example, if the SOC of an EV is high, users will be able to sell
redundant energy during UFLS. Meanwhile, if a random EV
is charged before UFLS, it will remain charged during UFLS
while waiting in the queue to be discharged. However, if the
charging time is longer than the previous discharging time, the
user will likely obtain a charging slot and not be discharged
while waiting in the queue with the low priority, as illustrated
in Table I.

Next, using (17)–(19), linear functions are investigated to
formulate the relationships. Specifically, we assume that when
the charging time is equal to the discharging time, the willing-
ness index is assigned a value of 0.5, owing to the equivalent
probability of charging or discharging.

{
QSOC(t) = SOC(t)
SOC(t) = SOC(t0) + 1

CEV

∫ t
t0

PEV
n,k,mdt

(17)

QPcharge = −0.5PEV
n,k,0 + 0.5 (18)

QT =
⎧
⎨

⎩
−0.5

Tcharge
Tdischarge

+ 1
Tcharge

Tdischarge
≤ 1

0
Tcharge

Tdischarge
> 1

(19)

QEV = aQSOC + bQPcharge + cQT (20)
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Algorithm 1 RO-UFLS-EV for Multi-Machine Power
Systems

a. Initialization: Confidence level 1-α. A set of the shedding threshold
F = {fT0, . . . , fTm, . . . , fTM}, which fTm is the mth shedding thresh-
old. M is the length of the threshold set. fn is the rated frequency.
Shedding round m = 0.

Main procedure:
b. Use bi-LSTM to predict wind power. Calculate and save the

prediction error.
c. Update fluctuation interval of wind power by (1)–(2) using a

confidence level of 1-α.
d. Load the variation interval of EV number from Algorithm 2.
e. Obtain system frequency f.

While f ≤ fTm do
f. Calculate the power deficit Pd by (12).
g. Solve the robust optimization-based UFLS (16). Send to EV

charging station.
h. Shed loads �PLoad. Shedding round m + 1.

End
i. Return to step b.

Algorithm 2 Task Allocation in an EV Charging Station
a. Initialization: Confidence level 1-β. Shedding round m = 0.
Main procedure:
b. Update variation interval of EVs by (8)–(10) using a confidence

level of 1-β. Send it to the Algorithm 1.
c. Monitor the data of EVs PEV

n,k,0, soc, Tcharge and Tdischarge.
Calculate QEV for each EV by (17)– (20).

While f ≤ fn do
d. Download dispatch task .
e. Solve the optimization (21) subjected to (22) and (23). Output the

order PEV
n,k,mto EVs.

f. Shedding round m + 1.
End

As shown in (20), the function is the weighted sum of the
SOC, charging power, and charging time. A reasonable priority
list can be realized by calculating the willingness index QEV
of the EVs and sorting them by size.

During an emergency, EV charging station waits for a dis-
patch from the control center. To allocate the dispatch to EVs
with the priority, the objective in (20) is considered in EV
charging stations. Subsequently, the EVs compensate for the
power task by following (22). The dispatch power for EVs
must be limited by the allowable power, as shown in (23). By
solving the proposed programming, the dispatched power of
each EV can be obtained.

min
NEVCS∑

k=1

NEV
k∑

n=1

QEV
(
PEV

n,k,0 − PEV
n,k,m

)
(21)

NEV
k∑

n=1

PEV
n,k,m = Pm,k

EVCS (22)

Pmin ≤ PEV
n,k,m ≤ Pmax. (23)

E. The Proposed RO-UFLS-EV Algorithm

For clarity, the proposed algorithm—Algorithm 1—based
on UFLS (RO-UFLS-EV) for multi-machine power systems
and the proposed allocation algorithm—Algorithm 2—for the
EV charging station are as follows.

Note that the proposed UFLS algorithm does not have an
over-regulation impact on the system due to the conserva-
tive estimation of the power deficiency, although the so-called

Fig. 3. An improved IEEE 9-bus power system.

Fig. 4. The load level of the improved IEEE 9-bus power system.

droop control method may result in an over-regulation impact
while considering inappropriate droop coefficients [35], [36].

IV. NUMERICAL SIMULATION AND DISCUSSION

A. Simulation System

The proposed model is examined on an improved IEEE
3-machine 9-bus system illustrated in Fig. 3 with the load
level shown in Fig. 4. The second-order synchronous generator
model is used and simulated under the MATLAB/SIMULINK
environment.

1) Wind power parameter: The wind farm is installed in Bus
8 with the rated power of 60 MW, the wind power of which
is from a real wind farm located in Southwest China with the
cut-in wind speed of 3 m/s and the cut-out wind speed of
20 m/s. To ensure prediction accuracy, we consider 7,200 data
sets for training and 1,800 data sets for testing.

2) EV parameters: Three EV aggregators are considered
in Buses 5, 6, and 8 with EV charging stations, as shown
in Fig. 3, and every EV charging station has 1,000 EVs.
Considering home charging stations, we assume that an EV
has the maximum charging/ discharging power of 7 kW and
the rated capacity of 32 kWh. The SOC levels and charging
power of EVs are simulated by the Monte Carlo method [21].
The parameters of the daily commuting simulation are shown
in Table II, and the traffic conditions can be found in [37].

3) UFLS parameters: The UFLS scheme usually consists of
basic rounds and the special rounds, as illustrated in Table III.
The detailed parameters include frequency thresholds, time
delay, etc., which can also be found in [1].

B. The Uncertainties of EV Charging Stations

1) Commuting Uncertainty Estimation: A transport simu-
lation is used to estimate the uncertainty of EVs, that is the
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TABLE II
DAILY COMMUTING PARAMETERS

TABLE III
THE PARAMETER SETTING OF UFLS

Fig. 5. Variation of EVs’ number in an EV charging station with 1,000 EVs.

Fig. 6. Variation of EVs’ number in an EV charging station with 2,000 EVs.

dynamic number of EVs at the charging points. The testing
region containing 29 buses and 49 lines is classified into two
residential districts and two office areas [32]. The starting and
endpoint of each EV journey are selected randomly. Initially,
1000 or 2000 EVs are estimated at the charging station for test
cases. The Monte Carlo method is used to simulate 5,000 times
to estimate the EV variation at the charging points. The traf-
fic conditions of the daily commuting simulation are referred
to [37].

As shown in Figs. 6 and 7, the variation in EVs’ number
is marked in different colors for different confidence intervals.
The number of EVs in a charging station varies with the time

Fig. 7. Frequency deviation of different amount of departing EVs.

Fig. 8. Load shedding for different numbers of EVs considering generator
trip.

Fig. 9. A segment of wind power prediction and interval.

due to commuting randomness. For instance, during the morn-
ing or evening rush hours (i.e., around 480 min or 1080 min),
the number of EVs in a charging station decreases due to
leaving from the home, a.m., or returning the home, p.m.
Therefore, the commuting uncertainty has a significant influ-
ence on the number of EVs in a charging station, and it will
impact system frequency dynamics.

In order to analyze the influence of EVs leaving the station
on the frequency deviation, we assume that at t = 10 s, the
generator at Bus 3 is tripped with the power of 85 MW. In
this condition, a larger frequency deviation will occur, when a
higher number of EVs leaves the station, as shown in Fig. 7.

2) The Influence of EV Amount on Load Shedding: As
shown in Fig. 9, using RO-UFLS-EV 50%, the load shed-
ding is 31.43 MW considering 1,000 EVs in each charging
station, while in the case of 2000 EVs per charging station,
there is no load shedding.

While we randomly select the number below 1,000 of EVs
for each charging station, the load shedding is 47.18 MW
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Fig. 10. Frequency response considering generator trip.

and is larger than that of 1,000 EVs in each charging station.
Therefore, the increase of the number of EVs at the charging
station can reduce the load shedding significantly.

C. The Prediction Conditions of Wind Power

In order to show the impact of wind power uncertainty on
UFLS, we respectively consider the 50%, 70%, and 90% con-
fidence interval of the prediction errors of wind power. As
shown in Fig. 9, these different confidence intervals can show
wind power uncertainty in different degrees, which means dif-
ferent impacts on the system. Therefore, they can be used to
verify the effectiveness of the proposed approach in ensuring
frequency stability.

D. Generator Trip

Frequency response performance: Traditional UFLS
(T-UFLS), adaptive UFLS (A-UFLS), and the proposed
UFLS (RO-UFLS-EV) model are compared in terms of
frequency dynamic and the load shedding. With the 50%,
70%, and 90% confidence interval of the prediction errors
of wind power, the proposed UFLS method is respectively
marked as RO-UFLS-EV 50%, 70%, and 90% for sim-
plification. While the generator connected to the bus-3 is
tripped at t = 10 s, the power imbalance is 85 MW, which is
approximately 26.59% of the current load. At the same time,
wind power generation is reduced owing to uncertain wind
speed, and the maximum generation loss is approximately
25 MW owing to wind farm variations. The power imbalance
reaches approximately 110 MW.

As shown in Fig. 10, for T-UFLS, A-UFLS, RO-UFLS-
EV 50%, RO-UFLS-EV 70%, and RO-UFLS-EV 90%, the
frequency reaches the steady states of 49.48, 49.52, 49.60,
49.61, and 49.62 Hz, respectively. Therefore, the better
performance is achieved by the proposed approach than
T-UFLS and A-UFLS. With an increase of the confidence
interval of wind power prediction, the proposed approach
could ensure the steady state of the system frequency closer
to the rated frequency (i.e., 50 Hz).

Under the T-UFLS mode, three tripping scenarios respec-
tively occur at t = 11.33 s, t = 11.71 s, and t = 12.41 s, as
shown in Fig. 11. This causes 19.97, 20, and 15.99 MW load-
shedding events, respectively. Meanwhile, a special round pro-
duces at t = 30.71 s to achieve the frequency of above 49.5 Hz
by the load-shedding event of 6.39 MW. Therefore, the total

Fig. 11. Load shedding considering generator trip.

load shedding of T-UFLS reaches 62.33 MW. For the A-UFLS
mode, the total load shedding reaches 68.67 MW, includ-
ing the three tripping rounds implemented with 22.01 MW
at t = 11.40 s, 22.01 MW at t = 11.71 s, and 17.6 MW
at t = 12.59 s. A special round is also activated using
7.04 MW load shedding to elevate the frequency level, as in
the previous case.

However, with EVs’ participation, the amount of load shed-
ding is reduced significantly. For example, as shown in Fig. 11,
the proposed approach under the RO-UFLS-EV 50% mode
only performs the load shedding of 15.11 MW, as the power
of 56.64 MW is from EVs. Compared to the 68.67 MW and
62.33 MW load-shedding events under A-UFLS and T-UFLS
modes, the total power of both the load shedding of 15.11 MW
and the power of 56.64 MW from EVs is closer to the real
power deficit of 110 MW. Because wind power uncertainty is
considered in the proposed method, a more precise estimation
of the power deficit may be realized.

As illustrated in Fig. 11, the RO-UFLS-EV 50% mode
utilizes the load shedding of 15.11 MW, load shedding
reaches 16.28 MW for the RO-UFLS-EV 70% mode, and
in the RO-UFLS-EV 90% mode, the load shedding is
17.93 MW. Therefore, an increase in the confidence interval
causes more load shedding, because high confidence intervals
such as RO-UFLS-EV 70% and 90% tend to cover more wind
power forecasting intervals. As shown in Fig. 10, the frequency
dynamics of RO-UFLS-EV 50%, 70%, and 90% are simi-
lar, because the lower bounds of these confidence intervals
are close to one another, i.e., 50% for 27.92 MW, 70% for
26.75 MW and 90% for 25.10 MW.

1) The Priority and SOC Levels of EVs: As shown in
Table IV, willingness index (QEV), SOC, charging power
(PEV

n,k,0), and EV ratio of Tcharge/discharge can help to place EVs
in the priority list. For example, the proposed algorithm places
the 62nd EV at the top of the priority list owing to its high
QEV and SOC values. However, not all of these variables are
proportional to each other. The QEV of the 925th EV is 0.669,
but its zero PEV

n,k,0 is placed in the middle of the priority list.
Even though the 151st EV with QEV = 0.667 is still discharg-
ing, the long discharging time in the past limits its location in
the queue. The proposed algorithm efficiently places EVs in
the priority list by accounting for higher values of QEV, SOC,
Tcharge Tcharge/discharge, and lower values of PEV

n,k,0.
Although participating in UFLS will have a negative influ-

ence on EV battery SOC, this influence is marginal. As shown
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TABLE IV
THE PRIORITY LIST AND CHARGING SITUATION OF EVS

Fig. 12. The SOC variations of EVs considering generator trip.

TABLE V
THE COMPUTATION EFFICIENCY OF THE PROPOSED MODEL

in Fig. 12, the variation of EV SOC is about 0.5%, which
means that the extended charging time is about 1.47 min-
utes while considering the charging power of 7 kW. On the
other hand, if EVs drive away during UFLS, they will not be
considered in the queue, as illustrated in Fig. 12.

2) Computation Complexity and Efficiency: The proposed
method consists of upper-level model and the lower-
level model. The upper-level model is for a robust linear
optimization problem, and the lower-level model is for a lin-
ear optimization problem. Note that the robust problem can
be transferred to a linear optimization problem by the duality
theory. Therefore, the interior-point method with the polyno-
mial convergence is here considered to high efficiently solve
both linear optimization problems.

As illustrated in Table V, for the lower-level model solution,
the proposed algorithm remains 0.016 s for three cases. This
is because every EV charging station has the same number of
EVs. Regarding the upper-level model solution, the calculation
time will increase with the number of EV charging stations,
but the computation is highly efficient. Note that we test the

TABLE VI
BIDIRECTIONAL COMMUNICATION TIME DELAY

Fig. 13. The influence of time delay on frequency considering generator
trip.

Fig. 14. The impact of time delay on load shedding considering generator
trip.

computation efficiency on an Intel Core i7 CPU 2.90 GHz
Computer. A higher performance computer can improve the
computation efficiency.

3) The influence of Time Delay on Frequency Dynamics:
To discuss the influence of the communication time delay on
system frequency dynamics, we consider three cases of the
time delay, as illustrated in Table VI.

As shown in Fig. 13, for three cases illustrated in Table VI,
the system has the lowest frequency of 49.01 Hz for Case
A, 48.98 Hz for Case B, 48.94 Hz for Case C, 48.85 Hz for
Case D, and 48.78 Hz for Case E, respectively. For Case A,
B, and C, the frequency exceeds the threshold of 49.3 Hz and
49.1 Hz. Therefore, two basic rounds are needed. However,
for Case D and E, an extra basic round is needed due to that
the lowest frequency is below the load shedding threshold of
48.9 Hz, as shown in Figs. 13 and 14. In this condition, for
Case D and E, the steady state frequency reaches 49.72 Hz,
which is higher than the steady state frequencies for Case A,
B, and C, as shown in Fig. 13.

Therefore, the time delay has a significant influence on the
lowest frequency. In particular, the longer the time delay is,
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Fig. 15. Low prediction accuracy of wind power.

Fig. 16. System frequency under low prediction accuracy of wind power.

Fig. 17. Load shedding under low prediction accuracy of wind power.

the smaller the lowest frequency is, which may cause extra
load shedding, as shown in Fig. 14.

4) Robustness Analysis: In order to discuss the robustness
of the proposed method in ensuring system frequency, we
considered the low prediction accuracy of wind power, as
illustrated in Fig. 15.

As shown in Fig. 16, the frequency reaches the steady states
of 49.69, 49.68, 49.92, 49.97, and 50.01 Hz for T-UFLS,
A-UFLS, RO-UFLS-EV-50%, RO-UFLS-EV-70%, and RO-
UFLS-EV-90%, respectively. The proposed method achieves
more robust performance than T-UFLS and A-UFLS, even
if different confidence intervals are considered for the low
prediction accuracy of wind power.

At the same time, as shown in Fig. 17, the load removal
reaches 71.92, 70.46, 43.37, 48.37, and 53.37 MW for
T-UFLS, A-UFLS, RO-UFLS-EV-50%, RO-UFLS-EV-70%,
and RO-UFLS-EV-90%, respectively. With an increase in the
confidence interval, the load removal increases due to includ-
ing more wind power forecasting intervals, and the proposed
approach remains the more robust performance in reducing

Fig. 18. Frequency response considering load increase.

Fig. 19. Load shedding considering load increase.

load shedding, compared with T-UFLS and A-UFLS. This
is because the proposed method is designed to withstand
the worst wind power variance. The larger the wind power
variance is, the more robust the system becomes.

Therefore, the confidence level of wind power prediction has
a significant influence on the system. The proposed approach
can remain good robust performance under different confi-
dence levels. If considering a low risk of high frequency to
obtain better performance in a low-frequency event, a middle-
or low-confidence level should be suggested.

E. Load Increase

The load increases to 60 MW at t = 10 s, which is
approximately 12.514% of the total load. With the wind
power uncertainty, the total power imbalance of the system
is 85 MW. As shown in Fig. 18, for T-UFLS, A-UFLS,
RO-UFLS-EV-50%, RO-UFLS-EV-70%, and RO-UFLS-EV-
90%, the frequency reaches the steady states of 49.71, 49.71,
49.67, 49.80, and 49.82 Hz, respectively. This means that the
proposed method has the advantage in ensuring frequency
stability over T-UFLS and A-UFLS.

As illustrated in Fig. 19, under the T-UFLS mode,
a 19.97 MW load is cut off. Under the action of the
A-UFLS mode, the power outage induces a load shedding of
11.85 MW. Under these circumstances, it is worth noting that
employing EVs via the proposed model can fully compensate
for the above load shedding to ensure the system frequency
above 49.5 Hz, and thus there is no load shedding. Therefore,
under the load increase scenario, ensuring frequency stability
and no load-shedding events have shown the effectiveness of
the proposed approach.
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TABLE VII
COMPARISONS WITH EXISTING APPROACHES

F. Comparisons With Recent Works

The existing research has shown that the simulations, such
as wind power uncertainty, generator trip, load increase,
flexible load, and time delay, are important to validate the
advantages of methods in performing UFLS. For instance,
in [15], wind power, generator loss, load increase, and the time
delay are considered; in [22], load increase, flexible load, and
the time delay are addressed. However, most of the existing
methods only consider part of these scenarios, in particular
neglecting wind power uncertainty. By contrast, the proposed
method includes more extensive scenarios, as illustrated in
Table VII. Therefore, the proposed method is more realistic
with a redundant approach.

V. CONCLUSION

This paper proposes a robust optimization of UFLS require-
ments to ensure frequency stability under various conditions.
The wind power uncertainty and the commuting randomness
of EVs are considered to be significant factors resulting in
unexpected frequency drops. The non-parametric KDE method
is adopted to estimate wind power and EV uncertainty, and
a robust optimization-based model is proposed for extreme
conditions. Numerical results demonstrated that the proposed
approach can efficiently dispatch EVs with users’ willingness
and effectively suppress frequency deviations. Compared to
T-UFLS and A-UFLS, the proposed approach can maintain
higher frequency levels.

When applied to a real-world smart grid, a middle or lower
value of the confidence level is suggested for a low risk of
high frequency in a low-frequency event. Many factors, such as
the reliability of communications, infrastructure, measurement
conditions, and cyber-attacks, may affect the performance of
the proposed model. Besides, the recharging of EVs may cause
a significant second disturbance after UFLS. Therefore, our
future work will focus on multi-stage load restoration plan of
EVs during load recovery and evaluate the performance of the
proposed method considering these factors mentioned above.
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