



Abstract— The integration of Internet-of-Thing (IoT) devices to
smart buildings raises the risk of vulnerabilities in building

operation. This paper presents the software development work for

the secure deployment of IoT devices in commercial buildings.

Security threats with their countermeasures are analyzed in the

context of a specific Building Automation System (BAS)
implementation called Building Energy Management Open

Source Software (BEMOSS TM).

Index Terms— Building energy management, Internet of

Things (IoT) and IT security.

I. INTRODUCTION

uilding Automation Systems (BAS) provide the ability to

monitor and control building operation remotely. These

systems are generally deployed to monitor and control major

loads, such as Heating, Ventilation and Air Conditioning

(HVAC), lighting and plug loads. BAS systems are beginning

to deploy low-cost, open standard and open source IoT devices.

With this shift, new security challenges have emerged. A BAS

system with IoT devices is typically connected to the cloud,

thus exposing the system to vulnerabilities at the IP level.

Compromising a single device in the network can result in

compromising the safety and security of the entire building.

In recent years, BAS systems have been exposed to several

cyber attacks. For example, the Tridium Niagara–a commercial

BAS system in Google’s Australia office–was hacked [1]. In

another instance, hackers gained control of building locks,

electricity, elevators, etc. as reported in [2]. HP found several

vulnerabilities in its recent security assessment of BAS [3].

Some of these attacks can be thwarted by securing networks and

communication protocols. Related work [4, 5, 6] discusses

about securing the network layer of a BAS platform, including

a means to secure communications protocols , like LonWorks,

Zigbee and BACnet. In [7], authors analyze the general security

issues and provide coping strategies for safer IoT construction

layers. Challenges in IoT security, including object

identification, authentication and authorization, lightweight

cryptosystems and security protocols, are discussed in [8].

Authors in [9] discuss a technique called named-data

networking, which focuses on information-centric network

architecture designs. In [10], authors enumerate some research

directions for IoT, targeting issues at the application layer, e.g.,

user privacy protection, leakage of sensitive information ,

This work was supported in part by the U.S. Department of Energy under

Contract DE-EE 0006352.

destruction of computer data, database corruption and other

vulnerabilities. Authors in [11] indicate privacy and security are

some of the most prominent challenges when integrating IoT

devices to a network and IoT integration demands additional

security which researchers and industries often overlook.

With the rapidly growing network of connected devices (i.e.,

IoT), it has become increasingly important to secure

applications, such as a BAS system that controls IoT devices.

While BAS systems should be secured end-to-end, privacy of

building operational data is also important. While such details

are enumerated everywhere, very few papers discuss ways to

implement such security measures. Often times the application

layer and user interaction layer security is not addressed in these

discussions. Additionally, while web security has been

discussed as a standalone concept, it has not been discussed in

the context of a BAS system integrating IoT devices , which

includes several additional layers as opposed to a traditional

web application.

 This paper discusses cybersecurity issues for IoT device

integration in a smart building (focusing at the device level,

platform level and the web interface) and provides

countermeasures for threats and vulnerabilities in the context of

a specific BAS implementation called BEMOSSTM.

II. OVERVIEW OF BEMOSSTM AND ITS ARCHITECTURE

BEMOSSTM (www.bemoss.org), sponsored by the U.S.

Department of Energy at Virginia Tech, is an open source

software platform built on a multi-agent technology. It has been

designed to allow sensing and control of HVAC, lighting and

plug loads in small- and medium-sized commercial buildings

that do not have existing building automation systems. As an

alternative to expensive proprietary BAS solutions,

BEMOSSTM has proven to reduce energy consumption and

enable implementation of demand respons e in buildings.

BEMOSSTM also enables seamless interaction between users

and IoT devices, such as Google Nest Thermostat, Philips Hue,

WeMo smart plugs, NetAtmo environmental sensors, and many

others.

A. BEMOSSTM Software Architecture

The BEMOSSTM software architecture consists of four

layers, as illustrated in Fig. 1 [12]. These layers communicate

with BEMOSSTM databases to manage metadata and time -

series data. Each layer is discussed in details below.

Security Concerns and Countermeasures in
IoT-Integrated Smart Buildings

Kruthika Rathinavel, Student Member, IEEE, Manisa Pipattanasomporn, Senior Member, IEEE,

Murat Kuzlu, Senior Member, IEEE, and Saifur Rahman, Fellow, IEEE

B

http://www.bemoss.org/

Fig. 1 BEMOSS

TM
software architecture.

UI Layer is responsible for provisioning the graphical user

interface and user management. BEMOSSTM UI is a responsive

web platform that allows seamless interaction with sensors and

load controllers through a web browser. This layer has built -in

authentication and authorization to allow different levels of

access control and provides secure web access.

Application Layer allows implementation of various

intelligent control applications for the platform. Some of the

possible applications are: fault-detection and diagnostics, price-

based building control and management, load shape analysis,

demand response, planning and scheduling, behavior pattern

analysis, load management, alarms and notifications.

Operating System and Agent Layer is considered the root

of the application, where VOLTTRONTM and BEMOSSTM

agents reside. Developed by the Pacific Northwest National

Laboratory, VOLTTRONTM is an agent-based platform that

provides low-level communications and necessary modules for

high-level application development [14]. Utilizing the

VOLTTRONTM platform to provide foundation for agent

communications, BEMOSSTM has been developed.

VOLTTRONTM’s Information Exchange Bus (IEB) serves as a

medium that enables communication among all BEMOSSTM

agents. The IEB also enables communication with the UI. The

UI layer connects to the IEB using a specific UI

Subscriber/Publisher agent. Note that there is a one-to-one

relationship between a BEMOSSTM agent and a device for

monitoring and control.

API Translator Layer is responsible for communication

between BEMOSSTM agents and all sensors, controllers and IoT

devices. API translators have been developed to allow

BEMOSSTM agents to communicate with a group of devices

based on their unique communication protocols and

Application Programming Interface (APIs). This allows

BEMOSSTM to read and control connected devices regardless

of their difference in API.

BEMOSSTM Database: In BEMOSSTM, there are two types

of databases, one to store metadata information about different

devices (using a relational database) and the other to store time-

series data.

B. BEMOSSTM System Architecture

When BEMOSSTM is deployed in a building, each

BEMOSSTM node (defined as a single-board computer with

BEMOSSTM source code installed) can communicate with

sensors and controllers in a building via a wireless network.

BEMOSSTM multi-node architecture can be deployed to support

multi-floor/multi-zone buildings. In our previous work [12, 13],

the BEMOSSTM system architecture is given in detailed.

III. SECURITY GOALS OF BEMOSSTM

The security goals for BEMOSSTM are represented in the

CIA (Confidentiality, Integrity, and Availability) triad [15].

CIA is a widely used benchmark for evaluation of information

systems security, focusing on the three core goals of

confidentiality, integrity, and availability of information.

Confidentiality is the inability of contents to be intercepted

by unauthorized personnel. As BEMOSSTM relies on wireless

networks for its communications, maintaining confidentiality in

information exchange is critical. Communication between the

client (web browser) and the server (application backend) and

between different nodes in BEMOSSTM can be compromised if

it is not adequately secured.

Integrity is the guarantee that data is protected from

accidental or deliberate (malicious) modification. Integrity

refers to the trustworthiness of information resources. If data

communication between different layers of the application is

not encrypted, it can be manipulated/intercepted in transit.

Integrity for data in transit is typically provided by using

hashing techniques and message authentication codes.

BEMOSSTM is accessible over the Internet making it vulnerable

to a host of attacks if the application is not properly secured.

Availability of information refers to ensuring that authorized

parties are able to access the information when needed. The

most common attack is Denial of Service (DoS) attacks. The

primary aim of DoS attacks is to deny users of acces s to

resources of a website. In a system like BEMOSSTM, IEB can

be bombarded with messages , causing the message queue to

overflow and lose messages to be received and acted upon.

Brute force login attacks and username enumeration can slow

down/shut down the system if they are not dealt with

adequately.

BEMOSSTM also provides failure recovery and redundancy

in both system operation and data storage. This software

platform deploys its multi-node architecture – that is engineered

such that a failing node can transfer its responsibilities to the

core – to enable continuous monitoring and control of building

environmental functions . Building operation data stored in

BEMOSSTM can also be distributed to multiple nodes for

redundancy.

Additionally, an end-user facing web-application is also

vulnerable to a host of vulnerabilities and other security threats.

The OWASP (Open Web Application Security Project) [16] has

identified top web application security risks. BAS applications

usually communicate with sensors and controllers to enable

monitor and control of building loads, using a communication

interface – usually a RESTful service or a message queue

depending on application requirements. This communication

interface is also vulnerable to attack over the Internet.

IV. SECURITY IMPLEMENTATION

To protect the application from the above threat scenarios,

several security features are implemented in BEMOSSTM ,

which are discussed below:

A. Preventing Brute Force Attacks

Brute force attacks (or an exhaustive key search method) is a

cryptanalytic attack that can, in theory, be used against

encrypted information. Unlike regular hacking that focuses on

vulnerabilities in software, a brute force attack aims at being the

simplest kind of method to gain access to a site by trying

usernames, passwords, repeatedly, until the password is

cracked. Although this is inelegant, when unsafe passwords are

used, these attacks are easily possible. Due to the nature of these

attacks, the server memory is often used up, which can cause

degradation in performance of a server. In BEMOSSTM, the

“Enforce Strong Passwords” and “Lock After Failed Login

Attempts” steps have been taken to prevent brute force attacks .

B. Secure Communication using Transport Layer Security

To allow no compromise of user credentials and sessions, an

SSL encryption is necessary. Although the use of SSL slightly

slows down the application, it is important to have a secure

communication between various layers of the application.

BEMOSSTM implements an SSL encryption by acting as its

own certificate authority (CA) to encrypt traffic end-to-end

between client and server. Since BEMOSSTM is mostly internal

to a building, issuing its own certificates is a reasonable way to

ensure security, being open source. BEMOSSTM being its own

CA needs to be registered with the browser the first time a user

logs into the site. Connections between the client and server are

encrypted using AES. The key size used for encryption is 256

bits. It operates on the Galois/Counter Mode (GCM) [17],

which is used for authenticated encryption. Certificates and

keys are added to the server and the server is configured to start

up and function in the encrypted mode. The same function can

also be performed with a verified certificate authority, like

Verisign, GlobalSign, if required.

C. Web Sockets Security

Similar to encrypting HTTP over SSL/TLS, web sockets can

also be encrypted using SSL/TLS. This protects the system

against man-in-the-middle attacks. Tunneling any important

requests to the underlying multi-agent platform has been

avoided. All requests made by the user to control a device or

modify settings happen using the web server request/response

protocol thus avoiding websocket level requests. On the other

hand, a push update from a specific agent to the application is

handled using Tunneling requests like database connection can

lead to an XSS attack thereby leading to the breach of the entire

application. Client inputs through a web socket are completely

avoided. All client inputs are validated at both the client side

and the server side, and requests are redirected to the core

platform via the server. No client requests are sent through web

sockets. Thus, the application cannot be infected via a client

side web socket request. The same-origin policy that rejects any

requests or pings from cross-origin servers is also implemented

to secure BEMOSSTM.

D. Session Management

The session framework allows retrieval of necessary

information based on the user that is logged in. It stores data on

the server side and abstracts the sending and receiving of

cookies. Cookies contain a session ID – not the data itself.

Sessions are implemented using a session middleware that

provides a database backed session. A session is stored as a data

model in the metadata storage system. Each session is identified

by a pseudo-random 32-character hash stored in a cookie.

Decoding the session ID gives the user ID in the JSON format ,

which can be used to perform required operations. Using

database-based cookies is safe since it defines the next level of

indirection for an attacker trying to misuse the session. A

cookie-backed session might be susceptible to replay attacks,

since cookies are not freshness-guaranteed and do not usually

have an expiration date. This means that an attacker who

obtains access to a session ID while a user still logs in can

store/copy cookies and access a user account even after a user

logs out.

E. Cross Site Request Forgery (CSRF) Protection

A CSRF attack relies on the fact that the brows er manages

cookies, and will include cookies associated with a target

domain to the forged HTTP request. The BEMOSSTM user

platform uses a Double Submit Cookie. This provides enough

protection from a CSRF attack since it is impossible for an

attacker to control the cookie field in a CSRF attack. A Double

Submit cookie is defined as sending a random value in both a

cookie and as a request parameter, with the server verifying the

cookie value and the request value. A CSRF cookie is set in the

HTML page using a ‘hidden’ field. This ensures that the server

receives the CSRF token without any malicious code that

modifies the token value. Custom JavaScript is written that

acquires the CSRF token and sends it to the server for every

AJAX (Asynchronous JavaScript and XML) request sent. A

CSRF cookie is generated as a session independent nonce

value. Other sites do not have access to this cookie. The safety

of this technique also relies on how random the CSRF token is.

The random number generator used in this context is the

Mersenne Twister Algorithm [18]. This provides protection

against identification spoofing, cookie replay attacks and CSRF

attacks.

F. Cross Site Scripting (XSS) Protection

XSS is defined as one of the primary security loopholes in

many web-based applications where user inputs are taken into

the system unsanitized. When generating HTML from

templates, there is always a risk of a malicious user entering

harmful JavaScript and other content into a form. In

BEMOSSTM, each untrusted variable is run through an escape

filter that converts potentially harmful HTML characters to safe

elements. In BEMOSSTM, majority of user inputs are

standardized. These standardized inputs have minimum use of

text fields where users are required to type in a value. This way,

most of the causes for XSS attack can be avoided. In other

cases, the client-side and server-side verification of the user

input is performed. The only area in the web application that

involves user input validation is for nicknames (device

nicknames, zone nicknames, schedule nicknames). Using

standardized inputs and server-side validation provides

protection against SQL injection attacks.

G. Error Handling

With web/general desktop applications, the error dump on

the screen is detailed enough for a developer to examine the

cause of the error. Such detailed information is a good

development tool, but it reveals too much information to users.

For this reason, it is important to abstract away error

information from end users. BEMOSSTM abstracts away all

error messages to secure away the source code and

implementation details from end users or attackers. Once an

error, like 404, 500, 302, etc., is captured in the server, and a

user is redirected to the corresponding error page. For example,

when a page that is not part of the regular URL configuration is

accessed, it is redirected to a 404 error page abstracting the

server process.

H. User Authentication and Authorization

Authentication: The first step in creating a secure web

application for BAS access is to enable user authentication to

the system. To access BEMOSSTM, a user is redirected to the

login screen where the user is authenticated. His privileges are

also registered at this point that allows user experience

customization based on his permissions. Authentication is

based on username/password. The PBKDF2 algorithm with

HMAC-SHA256 [19] hash with ~20,000 iterations is used to

secure the password in the database.

Authorization: An authenticated user is authorized to access

parts of the application or the entire application based on role

(discussed next). Each node is configured with the authorization

data. Each user has an Access Privilege Chart (APC), which

helps determine the user’s privilege at runtime. The APC can

be dynamically adjusted by an administrator. BEMOSSTM is

unique in restricting user privileges to the UI level access and

denies a user any privilege to access the underlying multi-agent

layer directly. Some security features implemented at the multi-

agent layer also prevent the user from manually tampering with

IoT devices by employing intelligent access restrictions. If a

user’s privileges are modified, the information is forwarded to

the session and new privileges take effect immediately.

I. Role-based User Management

BEMOSSTM platform includes role-based user management

to secure the system. Users are categorized as:

 Administrator – is given overall authorization to monitor

and control all devices in building operations.

 Zone manager – is given authorization to control devices

located in the zone assigned to him/her.

 Tenant – has read-only access to parts of the system.

Roles are associated with APC and thus ensure that every

request sent to the web server is handled based on the user’s

role. Malicious requests are discarded.

J. IP blacklisting:

BEMOSSTM takes measures in the software implementation

to prevent denial of service attacks. A middleware is

implemented in the user platform layer to lock out or banish

users by IP address. Users are automatically banned if they

exceed a certain number of requests per minute, which is

considered a likely form of denial of service attacks.

K. Securing IEB

A typical BEM system often exchanges messages using web

services or message queues. In the BEMOSSTM

implementation, a message queue is used. The message queue

is implemented as a publish-subscribe (Pub-Sub) mechanism.

Publishers are created with the PUB socket type. Data is

published on a particular topic. A subscriber can choose to

subscribe to these topics. Subscribers are created using the SUB

socket type. A subscriber can connect with many publishers.

Messages can be filtered based on topics. Note that the Pub-Sub

communication is asynchronous. That is, if a ‘publish’ service

has been started and a ‘subscriber’ subscribes to a topic already

published, those messages would not be received by the

subscriber. Only messages published after a subscription is

enabled will be received. If the subscriber connects to more than

one publisher, the data arrive interleaved, thus not allowing a

single publisher to drown the queue with its messages. Filtering

happens at the subscriber end, not at the publisher end.

There are two types of communication protocols used: inter

process communication (IPC), which needs ipc endpoint names

instead of an IPv4 address to be used, and transmission control

protocol (TCP).

L. Device Approval Process

In BEMOSSTM, it is important to add only legitimate devices

to a building system. An attacker may add fake devices to the

building operation, and try to attack the platform. For this

reason, a device approval process is necessary. BEMOSSTM has

an automatic device discovery process that runs in the

background to discover new devices as they become available

in the network. However, an approval is required from a

building administrator before a device is added to BEMOSSTM .

M. Isolating Sensitive Information

In an open source implementation where plenty of

developers access a repository, check out and use the same

code, it is important that sensitive information be protected and

kept unique. Securing sensitive information by placing them in

areas that cannot be reached can prevent any security flaws in

the system. However, in case of a system compromise, most of

this information can be leaked.

In BEMOSSTM, there are several usages of a secret key,

which is used for cryptographic signing within an application.

It is important to safeguard these keys at all times. A secret key

is used for the following functions in the application, directly or

indirectly:

• JSON object signing

• Password reset token

• Form security

• Protect against message tampering

• Protect session data and create random session keys

• Create random salt for most password hashers

• Create random passwords, as required

• Create CSRF tokens

N. Time-series Database Security:

BEMOSSTM web server reads the time-series database to

provide live statistics about the various entities/devices that are

part of the building automation system. The web server has

been designed in such a way that it can only read from the

database, both metadata and time-series. To write data to the

database, the web server has to route it through the

VOLTTRONTM platform and its agents. The read access to the

database is controlled by an authentication method that secures

the underlying databases from being tampered/accessed by the

attackers.

O. Linux Platform Security

BEMOSSTM is developed in the Linux Ubuntu environment.

For BEMOSSTM, relevant security modules are constantly

installed and implemented. System log utilities like systems

[20] are installed to obtain system logs. The core platform and

the user platform constantly add logs to files to allow

monitoring of application activities and for debugging

purposes. The ‘Snort’ intrusion detection tool is installed and a

set of rules are implemented to monitor system intrusions.

P. Device Security

Since some devices that are accessible by BEMOSSTM have

a basic HTTP protocol, using which an adversary will be able

to control the device if the device IP address is obtained. In case

of gaining such access, including the case of gaining physical

access to the device, an attacker can control a thermostat by

tampering with its temperature set point. BEMOSSTM tackles

this issue by detecting such a set point change and revert the

thermostat temperature set point back to its original value, if the

thermostat override is not allowed by the administrator.

V. CONCLUSION

This paper presents cybersecurity issues in IoT device

integration in smart buildings. It lays out possible security

threats and vulnerabilities, as well as presents countermeasures

in the context of a remote access BAS. It is important to note

that one of the limitations with implementing a security

framework that involves encrypting and decrypting data is the

use of processing power. BEMOSSTM is targeted at low cost

embedded systems, like the Raspberry Pi and Odroid type

devices, which have lower processing power compared to

traditional laptops or desktop computers. The BEMOSSTM

security framework runs alongside the entire computing

application/platform that controls these devices. It is important

that the security framework does not consume a lot of

processing power and provides optimum security for the entire

system.

This paper has provided an insight into the security concerns

in building-integrated IoT devices for software developers and

researchers who work with open source software.

REFERENCES

[1] Infosecurity (Magazine) - Researchers hack Google’s Australian office
building [Online]. Available: http://www.infosecurity-magazine.com/
news/researchers-hack-googles-australian-office. Retrieved: Oct 2015.

[2] Wired (Magazine) - Vulnerability Lets Hackers Control Building Locks,
Electricity, Elevators and More [Online]. Available: http://
www.wired.com/2013/02/tridium-niagara-zero-day. Retrieved: Oct 2015.

[3] The Register (Magazine) - Internet of Thieves: All that shiny home

security gear is crap, warns HP [Online]. Available: http://www.
theregister.co.uk/2015/02/10/iot_home_insecurity. Retrieved: Oct 2015.

[4] W. Shang, Q. Ding, A. Marianantoni, J. Burke and L. Zhang, "Securing

building management systems using named data networking," IEEE
Network, vol.28, no.3, pp.50-56, May-June 2014.

[5] W. Granzer, F. Praus and W. Kastner, "Security in Building Automation
Systems," IEEE Transactions on Industrial Electronics, vol.57, no.11,

pp.3622-3630, Nov. 2010.
[6] W. Granzer, W. Kastner, G. Neugschwandtner and F. Praus, "Security in

networked building automation systems," In Proc. 2006 IEEE
International Workshop on Factory Comm. Systems, pp.283-292, Torino,

Italy.
[7] Q. Gou, L. Yan, Y. Liu and Y. Li, "Construction and Strategies in IoT

Security System," In Proc. IEEE Intl Conference on Green Computing
and Communications, pp.1129-1132, 20-23 Aug. 2013, Beijing, China.

[8] Z. Zhang, M. Cho, C. Wang, C. Hsu, C. Chen and S. Shieh, "IoT Security:
Ongoing Challenges and Research Opportunities," In Proc. the 7th IEEE
International Conference on Service-Oriented Computing and

Applications (SOCA), , pp.230-234, 17-19 Nov. 2014, Matsue, Japan.
[9] F. Praus and W. Kastner, "Secure control applications in building

automation using domain knowledge," In Proc. the 8th IEEE
International Conference on Industrial Informatics (INDIN), pp.52-57,

13-16 July 2010, Osaka, Japan.
[10] X. Xingmei, Z. Jing and W. He, "Research on the basic characteristics, the

key technologies, the network architecture and security problems of the
Internet of things," In Proc. the 3rd Int. Conf. on Computer Science and

Network Technology (ICCSNT), 12-13 Oct. 2013, Dalian, China.
[11] S. Chen, H. Xu, D. Liu, B. Hu and H. Wang, "A Vision of IoT:

Applications, Challenges, and Opportunities with China Perspective,"
IEEE Trans. on Internet of Things, vol.1, no.4, pp.349-359, Aug. 2014.

[12] W. Khamphanchai., A. Saha, K. Rathinavel, M. Kuzlu, M.
Pipattanasomporn, S. Rahman, B. Akyol and J. Haack, "Conceptual
architecture of building energy management open source software
(BEMOSSTM)," In Proc. the IEEE PES Innovative Smart Grid

Technologies Conference (ISGT-Europe), 12-15 Oct. 2014, Istanbul,
Turkey.

[13] W. Khamphanchai, M. Pipattanasomporn, M. Kuzlu and S. Rahman, "An

agent-based open source platform for building energy management," In
Proc. the IEEE PES Innovative Smart Grid Technologies Conference
(ISGT-Asia), 3-6 Nov.2015, Bangkok, Thailand.

[14] J. Haack, B. Akyol, B. Carpenter, C. Tews, and L. Foglesong,

“VOLTTRON: An agent platform for smart grid.” In Proc. the 4th
International Workshop on Agent Technologies for Energy Systems,
pp.1367-1368, May 10, 2013, Minnesota, USA.

[15] CIA Triad. [Online]. Available: http://www.cyber-51.com/cyber51-

blog/145-cia-triad. Retrieved: Oct 2015.
[16] OWASP Top Ten 2013 [Online]. Available: https://www.owasp.org/

index.php/Category:OWASP_Top_Ten_Project#tab=OWASP_Top_10_
for_2013. Retrieved: May 2015.

[17] The Galois / Counter Mode of Operation (GCM) [Online]. Available:
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/g
cm/gcm-spec.pdf. Retrieved: Oct 2015.

[18] M. Matsumoto and T. Nishimura, "Mersenne twister", ACM Transactions
on Modeling and Computer Simulation, vol. 8, no. 1, pp. 3-30.

[19] PBKDF2 Algorithm [Online]. Available: https://tools.ietf.org/html/
rfc2898#appendix-A.2. Retrieved: Oct 2015

[20] Systemd “System and Service Manager” [Online]. Available:
http://www.freedesktop.org/wiki/Software/systemd. Retrieved: May
2015.

http://www.infosecurity-magazine.com/
https://www.owasp.org/
https://tools.ietf.org/html/
http://www.freedesktop.org/wiki/Software/systemd

