Invited Lecture

Professor Saifur Rahman

Director, Virginia Tech Advanced Research Inst., USA
President, IEEE Power & Energy Society 2018 & 2019

IEEE Bangladesh Section, 11 August 2020

Energy Efficiency in Smart Buildings through IoT Sensor Integration
Purpose and Objectives

• Buildings consume over 40% of the total energy consumption in the U.S. Over 90% of the buildings in the U.S. are either small-sized (<5,000 square feet) or medium-sized (between 5,000 sf and 50,000 sf). These buildings typically do not use Building Automation Systems (BAS) to monitor and control their building systems from a central location.

• WiseBldg platform facilitates energy efficiency applications in commercial buildings using a very simple and scalable building automation system (BAS).
An Open Architecture Platform for Building Energy Efficiency

WiseBldg is a Building Energy Management Open Architecture Software solution that is engineered to improve sensing and control of all IoT-enabled equipment in commercial buildings.

Monitoring and control:

Value:

Improves energy efficiency and facilitates peak load savings in buildings.

Three major loads in buildings:
- Heating, Ventilation, AC
- Lighting loads
- Plug loads

www.bemcontrols.com
WiseBldg supports multiple IoT devices through industry standard protocols and communications technologies.
Multiple-protocol Interoperability

Communication Technologies
- Ethernet (IEEE 802.3)
- Serial Interface (RS-485)
- ZigBee (IEEE 802.15.4)
- WiFi (IEEE 802.11)

Data Exchange Protocols
- BACnet (IP and MS/TP)
- Modbus (RTU and TCP)
- Web (e.g., XML, JSON, RSS/Atom)
- ZigBee API
- Smart Energy (SE)
- OpenADR (Open Automated Demand Response)
WiseBldg Platform Built by BEM Controls

Utility/DR Aggregator
- DR Event
- Pricing
- Billing

- Encrypted Data Link
- Router

Customers/Operators

Internet

Occupant comfort
Demand response
Solar PV/Storage Management
Peak demand (kW) reduction
Energy Savings (kWh)
Alarm & Notifications
Building Energy Management
Security Surveillance

Buildings

- HVAC
- Lighting loads
- Plug loads
- Sensors/power meters
- Water meters
- PV & storage
- Security camera

VirginiaTech
Invent the Future
WiseBldg can make an old building smart
Customers controlling buildings optimized for savings

Measured energy savings across deployments

20% HVAC Energy Savings
25% Lighting Energy Savings

Improved operations and maintenance: WiseBldg analytical platform enables operators to detect faults when devices operate outside standard thresholds enabling building operators to investigate prior to device failure.

Occupant satisfaction: spaces controlled by WiseBldg have been more comfortable due to more consistent temperature profiles and healthier air quality through consistent monitoring of environmental factors (CO2 levels, PM 2.5).
WiseBldg Deployments in Four Buildings

Building 1 – VT Classroom Building
- Location: Alexandria, VA
- Demonstration: HVAC, plug load control

Building 2 – Equipment Bureau Building
- Location: Arlington, VA
- Demonstration: Lighting control

Building 3 – VT Lab Building
- Location: Blacksburg, VA
- Demonstration: HVAC control

Building 4 – PG County Community Building
- Location: Camp Springs, MD
- Demonstration: HVAC control
Building 1 – VT Building in Alexandria, VA

Alexandria, Virginia, USA

Area: 25,000 SF
Energy: 14-25 MWh/mo.
Peak load: 61 kW
Classroom under Real-time Monitoring

- BEMOSS core
- Plug load controller
- Environmental sensor (CO2, noise, temperature)
- Motion sensor
- Thermostat
- Power meter
Indoor Environmental Monitoring

Bemoss Core: Weather_Sensor21

Indoor Environment Status
- Temperature: 71.4°F
- Humidity: 22.0%
- Pressure: 30.65 Pa
- CO2: 484.0 ppm
- Noise: 47.0 db

Outdoor Environment Status
- Temperature: 74.3°F
- Humidity: 49.0%
- Maximum Recorded Temperature: 74.3°F
- Minimum Recorded Temperature: 74.3°F

Graph: Weather_Sensor21: CO2

Data Recorded: Wed, 15 Jun 2016, 16:25
Using WiseBldg, Building Operator saved 27% on HVAC consumption alone.

Location: Alexandria, VA
Area: 25,000 square feet
Deployed Devices
- 6 Thermostats
- 6 Power meters
- 1 Li-ion battery
- 1 Environmental sensor

Summer Months (June-July-August)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressor consumption 2014 (Before WiseBldg)</td>
<td>8,340 kWh</td>
<td></td>
</tr>
<tr>
<td>Compressor consumption 2016 (After WiseBldg)</td>
<td>6,071 kWh</td>
<td></td>
</tr>
<tr>
<td>Average savings</td>
<td>26.8% savings</td>
<td></td>
</tr>
</tbody>
</table>

Base case (w/o WiseBldg)
- **Setpoint:** 74 deg F
- **Energy usage:** 2.72kWh
- **Max demand:** 3.98kW

Managed by WiseBldg
- **Setpoint:** 77 deg F
- **Energy usage:** 1.42kWh
- **Max demand:** 0.5kW
Office Building, Arlington, Virginia

Office building size: 5,000 sqft
Using WiseBldg the building operator reduced HVAC consumption by 27%

Energy Savings from Lighting Control

Location: Arlington, VA

Area: 5,000 sq ft

Deployed Devices

- 3 Lighting controllers
- 1 Power meter

An average energy savings of 35% was achieved through dimming control

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33.7%</td>
<td>33.9%</td>
<td>34.4%</td>
<td>33.4%</td>
<td>35.9%</td>
<td>36.2%</td>
<td>35.0%</td>
<td>36.0%</td>
<td>36.3%</td>
<td>34.5%</td>
</tr>
</tbody>
</table>
Energy Savings by controlling light intensity

<table>
<thead>
<tr>
<th>Month</th>
<th>Total Measured Energy Consumption (kWh)</th>
<th>Total Calculated Energy Consumption without Dimming (kWh)</th>
<th>Energy Savings by Dimming (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>October 2016</td>
<td>264.37</td>
<td>399.90</td>
<td>33.89%</td>
</tr>
<tr>
<td>November 2016</td>
<td>278.13</td>
<td>423.78</td>
<td>34.37%</td>
</tr>
<tr>
<td>December 2016</td>
<td>280.76</td>
<td>426.40</td>
<td>34.16%</td>
</tr>
<tr>
<td>Total (October-December)</td>
<td>823.26</td>
<td>1250.08</td>
<td>34.14%</td>
</tr>
</tbody>
</table>

Note: Scheduled dimming level from 6:30am to 9:00pm. Open office area A: 50%; Open office area B: 45%; Chief office’s desk area: 60%; Chief office’s meeting area: 50%; Conference room A: 50%; Conference room B: 45%. Lights are off after 9:00pm.
Solar PV System Monitoring and Control
Solar Panels in Winter
WiseBldg User Interface

Smart inverter control
Managing Battery Storage from WiseBldg Platform

Battery Cells

LG Chem

5 kW 12 kWh

Virginia Tech
Invent the Future
Battery Storage Data Access from WiseBldg
Battery Storage Monitoring & Control
All Buildings should be Smart Buildings

Building Automation Systems (BAS) can slash power consumption and energy bills significantly, but they are too expensive for most buildings.

BEM Controls breaks through this barrier.

Our Wise Building (WiseBldg) platform is affordable and works with any existing loads to make any building smart, no matter the size or age.

www.bemcontrols.com
I would like to see a broader IEEE

We need to ensure that we are “READY FOR RECOVERY”, when we get back to the “NEW NORMAL” after COVID-19. Let us enhance cooperation, collaboration and community spirit.

For this we need to make IEEE broader so that IEEE is more relevant to the work our members do regardless where they work.

We need more participation from volunteers globally in IEEE governance. A broader based IEEE will make the Institute more relevant to technologists and academics from all parts of the world.

I would like to see more IEEE Senior Members and IEEE Fellows from Regions 8, 9 & 10
Prof. Saifur Rahman (s.rahman@ieee.org)

Past-President of IEEE Power & Energy Society
Past-Chair, IEEE Publication Services & Products Board

PES accomplishments:
 PES University
 PES Corporate Engagement Program
 PES Chapters’ Councils in China, India, Africa and Latin America