Role of the Smart Grid in Facilitating the Integration of Renewables

Invited Speech

IEEE Bhubaneswar Sub-section and IEEE PES Bhubaneswar Chapters Webinar
25 July 2020

Professor Saifur Rahman
Director, Advanced Research Institute, Virginia Tech, USA
President, IEEE Power & Energy Society 2018 & 2019
"Smart grid" is a concept with many elements where monitoring and control of each element in the chain of generation, transmission, distribution and end-use allow the electricity delivery and use to be more efficient.
Electric Power Grid

Source: www.sxc.hu
Motivation for a Smart Grid

Desire to make the grid smarter, safer, reliable and more cost-effective using advanced sensors, communication technologies and distributed computing.
Difference Between a Normal Grid And a Smart Grid

Normal Phone

Smart Phone

©Saifur Rahman
Starting and End Points of a Smart Grid

From Generator to Refrigerator

1. Power Plant
2. Transmission
3. Distribution
4. Home Business
5. End-use Appliances
Before Smart Grid:

One-way power flow, simple interactions

After Smart Grid:

Two-way power flow, multi-stakeholder interactions

Source: Altalink, Alberta, Canada
Intelligent Load
Demand or price-driven control of appliances

Sensors
Detect outages, fluctuations, and disturbances

Distribution Network
Interconnected micro grids

Distributed Arch.

Local Monitoring and Control

Wind Power Park

Smart Inverters and Storage
Minimize voltage and power fluctuations

Control Room Functions
Balance electricity supply/demand across the grid

Bulk Power Plant

© Saifur Rahman
Merging Power Flow with Information Flow:

Integrated Communications
Electric Power & Communication Infrastructures

1. Power Infrastructure

- Central Generating Station
- Step-Up Transformer
- Distribution Substation
- Receiving Station
- Distribution Substation
- Commercial
- Industrial
- Recip Engine
- Flywheel
- Fuel cell
- Industrial
- Cogeneration
- Recip Engine
- Gas Turbine
- Recip Engine
- Residential Data Concentrator
- Photo voltaics
- Batteries
- Residential

2. Information Infrastructure

- Control Center
- Data network Users

Source: EPRI
Changing Landscape for the Electric Utility
Issues with Distributed Generation

- Wind and solar are intermittent
- Hydro is space limited
- Resource is free but not always usable
BPA Wind Output and Load Mismatch (January 2013)
BPA Wind Output and Load Mismatch (April 2013)
BPA Wind Output and Load Mismatch (July 2013)
BPA Wind Output and Load Mismatch (Oct 2013)
Wind output can drop 43.7 MW in 1 minute for a single 150-MW wind farm

Source: NREL
Wind output can drop 113 MW in 10 minutes, and increase 106 MW in 10 minutes.
Hourly wind power variation (MW) in Texas, USA (01 and 02 Jan 2008)

Installed Capacity 4,541 MW
Hourly wind power variation (MW) in Texas, USA (03 and 04 Jan 2008)

03 Jan 2008

04 Jan 2008

Installed Capacity 4,541 MW
Roof-top Solar Photovoltaics in Virginia
Solar Panels in Winter
7-Day Solar PV Output

PV AC Power Output During One Sunny Week

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7
2
5
7-Day Solar PV Output (intermittent)

PV AC Power Output During One Cloudy Week

- AC Power (W)
- Time (hour)
- Days: Day 1, Day 2, Day 3, Day 4, Day 5, Day 6, Day 7
Daily PV Output

PV AC Power Output During One Sunny Day

AC Power (W)

Time (Minute)
Daily PV Output (intermittent)
Can the Intermittency be Absorbed by the Network?

- Battery storage
- Compressed Air Storage
- Pumped Storage
Demand Response

“Demand Response is a customer action to control load to meet a certain target. Here the customer chooses what load to control and for how long”.

This is different from Demand Side Management (DSM) where the load is controlled by the electric utility and the customer has no control beyond the initial consent.
New Paradigm for the Power System

• Historically: Demand driven supply (supply responds to demand)
• New Reality: Supply driven demand (demand needs to adjust to meet fluctuating supply with help from storage)

THE SMART GRID ECOSYSTEM
THE SMART GRID ECOSYSTEM

Smart grid: Bi-directional flows of energy, remote control/automation of power, integrated distributed energy…

Smart city: Complex system of interconnected infrastructures and services…

Smart Campus: A collection of buildings managed by the same facility manager…

Smart buildings: Intelligent building automation systems, smart devices, productive users, grid integration…

Supported by ICT and distributed networks of intelligent sensors, data centers/clouds
What makes a Building Smart

A single platform for monitoring and control of HVAC, lighting, water supply, sensor networks, security camera & fire emergency

Cumulative Benefits of Building Load Control

- A large number of buildings can be controlled to absorb large fluctuations of supply in the short term
- Minimal storage is required
- Investment is for monitoring and control
Addressing the Intermittency in Renewable Generation

- Smart vs. not-so-smart load control
 (adjust temperature set points in an air conditioner or water heater vs. turning the unit off)
- Size the storage to take advantage of demand dynamics
- Control the renewable generation to avoid instability (output control from PV inverters)
I would like to see a broader IEEE

We need to ensure that we are “READY FOR RECOVERY”, when we get back to the “NEW NORMAL” after COVID-19. Let us enhance cooperation, collaboration and community spirit.

For this we need to make IEEE broader so that IEEE is more relevant to the work our members do regardless where they work.

We need more participation from volunteers globally in IEEE governance. A broader based IEEE will make the Institute more relevant to technologists and academics from all parts of the world.

I would like to see more IEEE Senior Members and IEEE Fellows from Regions 8, 9 & 10
Prof. Saifur Rahman (s.rahman@ieee.org)

Past-President of IEEE Power & Energy Society
Past-Chair, IEEE Publication Services & Products Board

PES accomplishments:
PES University
PES Corporate Engagement Program
PES Chapters’ Councils in China, India, Africa and Latin America